Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
5g System Design
Architectural and Functional Considerations and Long Term Research
Buch von Patrick Marsch (u. a.)
Sprache: Englisch

136,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-3 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This book provides a comprehensive overview of the latest research and standardization progress towards the 5th generation (5G) of mobile communications technology and beyond. It covers a wide range of topics from 5G use cases and their requirements, to spectrum, 5G end-to-end (E2E) system architecture including core network (CN), transport network (TN) and radio access network (RAN) architecture, network slicing, security and network management. It further dives into the detailed functional design and the evaluation of different 5G concepts, and provides details on planned trials and pre-commercial deployments across the globe. While the book naturally captures the latest agreements in 3rd Generation Partnership Project (3GPP) New Radio (NR) Release 15, it goes significantly beyond this by describing the likely developments towards the final 5G system that will ultimately utilize a wide range of spectrum bands, address all envisioned 5G use cases, and meet or exceed the International Mobile Telecommunications (IMT) requirements for the year 2020 and beyond (IMT-2020).

5G System Design: Architectural and Functional Considerations and Long Term Research is based on the knowledge and consensus from 158 leading researchers and standardization experts from 54 companies or institutes around the globe, representing key mobile network operators, network vendors, academic institutions and regional bodies for 5G. Different from earlier books on 5G, it does not focus on single 5G technology components, but describes the full 5G system design from E2E architecture to detailed functional design, including details on 5G performance, implementation and roll-out.
This book provides a comprehensive overview of the latest research and standardization progress towards the 5th generation (5G) of mobile communications technology and beyond. It covers a wide range of topics from 5G use cases and their requirements, to spectrum, 5G end-to-end (E2E) system architecture including core network (CN), transport network (TN) and radio access network (RAN) architecture, network slicing, security and network management. It further dives into the detailed functional design and the evaluation of different 5G concepts, and provides details on planned trials and pre-commercial deployments across the globe. While the book naturally captures the latest agreements in 3rd Generation Partnership Project (3GPP) New Radio (NR) Release 15, it goes significantly beyond this by describing the likely developments towards the final 5G system that will ultimately utilize a wide range of spectrum bands, address all envisioned 5G use cases, and meet or exceed the International Mobile Telecommunications (IMT) requirements for the year 2020 and beyond (IMT-2020).

5G System Design: Architectural and Functional Considerations and Long Term Research is based on the knowledge and consensus from 158 leading researchers and standardization experts from 54 companies or institutes around the globe, representing key mobile network operators, network vendors, academic institutions and regional bodies for 5G. Different from earlier books on 5G, it does not focus on single 5G technology components, but describes the full 5G system design from E2E architecture to detailed functional design, including details on 5G performance, implementation and roll-out.
Über den Autor

DR. PATRICK MARSCH has been heading research and R&D departments in NSN and Nokia, Poland, from 2011 to 2017, and is now Senior Project Manager, Digital Rail at Deutsche Bahn AG, Germany. Patrick has also been the technical manager of the 5G PPP METIS-II project, from which parts of this book have originated.

DR. ÖMER BULAKÇI is Senior Research Engineer, Huawei German Research Center (GRC), Munich, Germany. He has been vice-chairman of the 5G PPP Architecture Working Group, and work package leader in 5G PPP METIS-II and 5G-MoNArch projects.

DR. OLAV QUESETH, is Master Researcher, Ericsson Research, Sweden. He has been chairman of the 5G PPP Pre-standards Working Group and the coordinator of the 5G PPP METIS-II project.

MAURO BOLDI works at Wireless Innovation, Telecom Italia, Italy. He has been the leader of dissemination and standardization in many European projects, such as 5G PPP METIS-II and 5G-MoNArch.

Inhaltsverzeichnis
Contributor List xvii Foreword 1 xxiii Foreword 2 xxv Acknowledgments xxvii List of Abbreviations xxix Part 1 Introduction and Basics 1 1 Introduction and Motivation 3Patrick Marsch, Ömer Bulakc¿¿, Olav Queseth and Mauro Boldi 1.1 5 th Generation Mobile and Wireless Communications 3 1.2 Timing of this Book and Global 5G Developments 5 1.3 Scope of the 5G System Described in this Book 8 1.4 Approach and Structure of this Book 10 References 12 2 Use Cases, Scenarios, and their Impact on the Mobile Network Ecosystem 15Salah Eddine Elayoubi, Michä Maternia, Jose F. Monserrat, Frederic Pujol, Panagiotis Spapis, Valerio Frascolla and Davide Sorbara 2.1 Introduction 15 2.2 Main Service Types Considered for 5G 16 2.3 5G Service Requirements 17 2.4 Use Cases Considered in NGMN and 5G PPP Projects 18 2.4.1 NGMN use Case Groups 20 2.4.2 Use Case Groups from 5G PPP Phase 1 Projects 23 2.4.3 Mapping of the 5G¿PPP Use Case Families to the Vertical Use Cases 23 2.5 Typical Use Cases Considered in this Book 25 2.5.1 Dense Urban Information Society 25 2.5.2 Smart City 26 2.5.3 Connected Cars 26 2.5.4 Industry Automation 27 2.5.5 Broadcast/Multicast Communications 27 2.6 Envisioned Mobile Network Ecosystem Evolution 28 2.6.1 Current Mobile Network Ecosystem 28 2.6.2 Identification of New Players and their Roles in 5G 28 2.6.3 Evolution of the MNO¿Centric Value Net 31 2.7 Summary and Outlook 33 References 34 3 Spectrum Usage and Management 35Thomas Rosowski, Rauno Ruismaki, Luis M. Campoy, Giovanna D'Aria, Du Ho Kang and Adrian Kliks 3.1 Introduction 35 3.2 Spectrum Authorization and Usage Scenarios 36 3.2.1 Spectrum Authorization and Usage Options for 5G 36 3.2.2 Requirements for Different 5G Usage Scenarios 38 3.3 Spectrum Bandwidth Demand Determination 39 3.3.1 Main Parameters for Spectrum Bandwidth Demand Estimations 39 3.3.2 State of the Art of Spectrum Demand Analysis 40 3.3.3 Spectrum Demand Analysis on Localized Scenarios 40 3.4 Frequency Bands for 5G 41 3.4.1 Bands Identified for IMT and Under Study in ITU¿R 41 3.4.2 Further Potential Frequency Bands 43 3.4.3 5G Roadmaps 44 3.5 Spectrum Usage Aspects at High Frequencies 44 3.5.1 Propagation Challenges 45 3.5.2 Beamforming and 5G Mobile Coverage 45 3.5.3 Analysis of Deployment Scenarios 46 3.5.4 Coexistence of 5G Systems and Fixed Service Links 47 3.5.5 Coexistence under License¿exempt Operation 48 3.6 Spectrum Management 49 3.6.1 Evolutions in Dynamic Spectrum Management 49 3.6.2 Functional Spectrum Management Architecture 51 3.7 Summary and Outlook 53 References 54 4 Channel Modeling 57Shangbin Wu, Sinh L. H. Nguyen and Raffaele D'Errico 4.1 Introduction 57 4.2 Core Features of New Channel Models 59 4.2.1 Path Loss 59 4.2.2 LOS Probability 61 4.2.3 O2I Penetration Loss 63 4.2.4 Fast Fading Generation 65 4.3 Additional Features of New Channel Models 65 4.3.1 Large Bandwidths and Large Antenna Arrays 65 4.3.2 Spatial Consistency 67 4.3.3 Blockage 68 4.3.4 Correlation Modeling for Multi¿Frequency Simulations 69 4.3.5 Ground Reflection 70 4.3.6 Diffuse Scattering 72 4.3.7 D2D, Mobility, and V2V Channels 72 4.3.8 Oxygen Absorption, Time¿varying Doppler Shift, Multi¿Frequency Simulations, and UE Rotation 73 4.3.9 Map¿based Hybrid Modeling Approach 74 4.4 Summary and Outlook 74 References 75 Part 2 5G System Architecture and E2E Enablers 79 5 E2E Architecture 81Marco Gramaglia, Alexandros Kaloxylos, Panagiotis Spapis, Xavier Costa, Luis Miguel Contreras, Riccardo Trivisonno, Gerd Zimmermann, Antonio de la Oliva, Peter Rost and Patrick Marsch 5.1 Introduction 81 5.2 Enablers and Design Principles 82 5.2.1 Modularization 82 5.2.2 Network Slicing 82 5.2.3 Network Softwarization 84 5.2.4 Multi¿Tenancy 85 5.2.5 Mobile or Multi¿Access Edge Computing 87 5.3 E2E Architecture Overview 88 5.3.1 Physical Network Architecture 88 5.3.2 CN/RAN Split 90 5.3.3 QoS Architecture 91 5.3.4 Spectrum Sharing Architecture Overview 93 5.3.5 Transport Network 93 5.3.6 Control and Orchestration 95 5.4 Novel Concepts and Architectural Extensions 97 5.4.1 Architecture Modularization for the Core Network 97 5.4.2 RRC States 99 5.4.3 Access¿agnostic 5G Core Network 100 5.4.4 Roaming Support 101 5.4.5 Softwarized Network Control 102 5.4.6 Control/User Plane Split 103 5.5 Internetworking, Migration and Network Evolution 104 5.5.1 Interworking with Earlier 3GPP RATs 105 5.5.2 Interworking with Non¿3GPP Access Networks 107 5.5.3 Network Evolution 111 5.6 Summary and Outlook 112 References 112 6 RAN Architecture 115Patrick Marsch, Navid Nikaein, Mark Doll, Tao Chen and Emmanouil Pateromichelakis 6.1 Introduction 115 6.2 Related Work 116 6.2.1 3gpp 116 6.2.2 5g Ppp 117 6.3 RAN Architecture Requirements 118 6.4 Protocol Stack Architecture and Network Functions 119 6.4.1 Network Functions in a Multi¿AIV and Multi¿Service Context 119 6.4.2 Possible Changes in the 5G Protocol Stack Compared to 4G 121 6.4.3 Possible Service¿specific Protocol Stack Optimization in 5G 124 6.4.4 NF Instantiation for Multi¿Service and Multi¿Tenancy Support 127 6.5 Multi¿Connectivity 129 6.5.1 5G/(e)LTE Multi¿Connectivity 129 6.5.2 5G/5G Multi¿Connectivity 130 6.5.3 5G/Wi¿Fi Multi¿Connectivity 132 6.6 RAN Function Splits and Resulting Logical Network Entities 133 6.6.1 Control Plane/User Plane Split (Vertical Split) 134 6.6.2 Split into Centralized and Decentralized Units (Horizontal Split) 135 6.6.3 Most Relevant Overall Split Constellations 138 6.7 Deployment Scenarios and Related Physical RAN Architectures 141 6.7.1 Possible Physical Architectures Supporting the Deployment Scenarios 142 6.7.2 5G/(e)LTE and 5G Multi¿AIV Co¿Deployment 143 6.8 RAN Programmability and Control 144 6.9 Summary and Outlook 147 References 148 7 Transport Network Architecture 151Anna Tzanakaki, Markos Anastasopoulos, Nathan Gomes, Philippos Assimakopoulos, Josep M. Fàbrega, Michela Svaluto Moreolo, Laia Nadal, Jesús Gutiérrez, Vladica Sark, Eckhard Grass, Daniel Camps¿Mur, Antonio de la Oliva, Nuria Molner, Xavier Costa Perez, Josep Mangues, Ali Yaver, Paris Flegkas, Nikos Makris, Thanasis Korakis and Dimitra Simeonidou 7.1 Introduction 151 7.2 Architecture Definition 153 7.2.1 User Plane 153 7.2.2 Control Plane 155 7.3 Technology Options and Protocols 158 7.3.1 Wireless Technologies 158 7.3.2 Optical Transport 161 7.3.3 Ethernet 165 7.4 Self¿Backhauling 165 7.4.1 Comparison with Legacy LTE Relaying 166 7.4.2 Technical Aspects of Self¿Backhauling 167 7.5 Technology Integration and Interfacing 168 7.5.1 Framing, Protocol Adaptation, Flow Identification and Control 168 7.5.2 PBB/MPLS Framing to Carry FH/BH and its Multi¿Tenancy Characteristic 169 7.6 Transport Network Optimization and Performance Evaluation 170 7.6.1 Evaluation of Joint FH and BH Transport 170 7.6.2 Experimental Evaluation of Layer¿2 Functional Splits 173 7.6.3 Monitoring in the Ethernet Fronthaul 174 7.7 Summary 178 References 178 8 Network Slicing 181Alexandros Kaloxylos, Christian Mannweiler, Gerd Zimmermann, Marco Di Girolamo, Patrick Marsch, Jakob Belschner, Anna Tzanakaki, Riccardo Trivisonno, Ömer Bulakc¿¿, Panagiotis Spapis, Peter Rost, Paul Arnold and Navid Nikaein 8.1 Introduction 181 8.2 Slice Realization in the Different Network Domains 183 8.2.1 Realization of Slicing in the Core Network 183 8.2.2 Slice Support on the Transport Network 186 8.2.3 Impact of Slicing on the Radio Access Network 187 8.2.4 Slice Support Across Different Administrative Domains 191 8.2.5 E2E Slicing: A Detailed Example 193 8.3 Operational Aspects 196 8.3.1 Slice Selection 196 8.3.2 Connecting to Multiple Slices 197 8.3.3 Slice Isolation 197 8.3.4 Radio Resource Management Among Slices 198 8.3.5 Managing Network Slices 199 8.4 Summary and Outlook 202 References 204 9 Security 207Carolina Canales¿Valenzuela, Madalina Baltatu, Luciana Costa, Kai Habel, Volker Jungnickel, Geza Koczian, Felix Ngobigha, Michael C. Parker, Muhammad Shuaib Siddiqui, Eleni Trouva and Stuart D. Walker 9.1 Introduction 207 9.2 Threat Landscape 208 9.3 5G Security Requirements 209 9.3.1 Adoption of Software¿defined Networking and Virtualization Technologies 209 9.3.2 Security Automation and Management 210 9.3.3 Slice Isolation and Protection Against Side Channel Attacks in Multi¿Tenant Environments 211 9.3.4 Monitoring and Analytics for Security Purposes 211 9.4 5G Security Architecture 211 9.4.1 Overall Description 211 9.4.2 Infrastructure Security 213 9.4.3 Physical Layer Security 216 9.4.4 5G RAN Security 217 9.4.5 Service¿level Security 221 9.4.6 A Control and Management Framework for Automated Security 221 9.5 Summary 224 References 224 10 Network Management and Orchestration 227Luis M. Contreras, Víctor López, Ricard Vilalta, Ramon Casellas, Raúl Muñoz, Wei Jiang, Hans Schotten, Jose Alcaraz¿Calero, Qi Wang, Balázs Sonkoly and László Toka 10.1 Introduction 227 10.2 Network Management and Orchestration Through SDN and NFV 228 10.2.1 Software-Defined Networking 229 10.2.2 Network Function Virtualization 232 10.3 Enablers of Management and Orchestration 233 10.3.1 Open and Standardized Interfaces 234 10.3.2 Modeling of Services and Devices 237 10.4 Orchestration in Multi¿Domain and Multi¿Technology Scenarios 238 10.4.1 Multi¿Domain Scenarios 238 10.4.2 Multi¿Technology Scenarios 244 10.5 Software¿Defined Networking for 5G 245 10.5.1 Xhaul Software¿Defined Networking 245 10.5.2 Core Transport Networks 250 10.6 Network Function Virtualization in 5G Environments 251 10.7 Autonomic Network Management in 5G 252 10.7.1 Motivation 252 10.7.2 Architecture of Autonomic Management 254 10.7.3 Autonomic Control Loop 255 10.7.4 Enabling Algorithms 257 10.8 Summary 258 References 259 Part 3 5G Functional Design 263 11 Antenna, PHY and MAC Design 265Frank Schaich, Catherine Douillard, Charbel Abdel Nour, Malte Schellmann, Tommy Svensson, Hao Lin, Honglei Miao, Hua Wang, Jian Luo, Milos Tesanovic, Nuno Pratas, Sandra Roger and Thorsten Wild 11.1 Introduction 265 11.2 PHY and MAC Design Criteria and Harmonization 267 11.3 Waveform Design 269...
Details
Erscheinungsjahr: 2018
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781119425120
ISBN-10: 1119425123
Sprache: Englisch
Einband: Gebunden
Redaktion: Marsch, Patrick
Bulakci, Ömer
Queseth, Olav
Boldi, Mauro
Hersteller: Wiley
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 241 x 192 x 38 mm
Von/Mit: Patrick Marsch (u. a.)
Erscheinungsdatum: 11.06.2018
Gewicht: 1,241 kg
Artikel-ID: 110945050
Über den Autor

DR. PATRICK MARSCH has been heading research and R&D departments in NSN and Nokia, Poland, from 2011 to 2017, and is now Senior Project Manager, Digital Rail at Deutsche Bahn AG, Germany. Patrick has also been the technical manager of the 5G PPP METIS-II project, from which parts of this book have originated.

DR. ÖMER BULAKÇI is Senior Research Engineer, Huawei German Research Center (GRC), Munich, Germany. He has been vice-chairman of the 5G PPP Architecture Working Group, and work package leader in 5G PPP METIS-II and 5G-MoNArch projects.

DR. OLAV QUESETH, is Master Researcher, Ericsson Research, Sweden. He has been chairman of the 5G PPP Pre-standards Working Group and the coordinator of the 5G PPP METIS-II project.

MAURO BOLDI works at Wireless Innovation, Telecom Italia, Italy. He has been the leader of dissemination and standardization in many European projects, such as 5G PPP METIS-II and 5G-MoNArch.

Inhaltsverzeichnis
Contributor List xvii Foreword 1 xxiii Foreword 2 xxv Acknowledgments xxvii List of Abbreviations xxix Part 1 Introduction and Basics 1 1 Introduction and Motivation 3Patrick Marsch, Ömer Bulakc¿¿, Olav Queseth and Mauro Boldi 1.1 5 th Generation Mobile and Wireless Communications 3 1.2 Timing of this Book and Global 5G Developments 5 1.3 Scope of the 5G System Described in this Book 8 1.4 Approach and Structure of this Book 10 References 12 2 Use Cases, Scenarios, and their Impact on the Mobile Network Ecosystem 15Salah Eddine Elayoubi, Michä Maternia, Jose F. Monserrat, Frederic Pujol, Panagiotis Spapis, Valerio Frascolla and Davide Sorbara 2.1 Introduction 15 2.2 Main Service Types Considered for 5G 16 2.3 5G Service Requirements 17 2.4 Use Cases Considered in NGMN and 5G PPP Projects 18 2.4.1 NGMN use Case Groups 20 2.4.2 Use Case Groups from 5G PPP Phase 1 Projects 23 2.4.3 Mapping of the 5G¿PPP Use Case Families to the Vertical Use Cases 23 2.5 Typical Use Cases Considered in this Book 25 2.5.1 Dense Urban Information Society 25 2.5.2 Smart City 26 2.5.3 Connected Cars 26 2.5.4 Industry Automation 27 2.5.5 Broadcast/Multicast Communications 27 2.6 Envisioned Mobile Network Ecosystem Evolution 28 2.6.1 Current Mobile Network Ecosystem 28 2.6.2 Identification of New Players and their Roles in 5G 28 2.6.3 Evolution of the MNO¿Centric Value Net 31 2.7 Summary and Outlook 33 References 34 3 Spectrum Usage and Management 35Thomas Rosowski, Rauno Ruismaki, Luis M. Campoy, Giovanna D'Aria, Du Ho Kang and Adrian Kliks 3.1 Introduction 35 3.2 Spectrum Authorization and Usage Scenarios 36 3.2.1 Spectrum Authorization and Usage Options for 5G 36 3.2.2 Requirements for Different 5G Usage Scenarios 38 3.3 Spectrum Bandwidth Demand Determination 39 3.3.1 Main Parameters for Spectrum Bandwidth Demand Estimations 39 3.3.2 State of the Art of Spectrum Demand Analysis 40 3.3.3 Spectrum Demand Analysis on Localized Scenarios 40 3.4 Frequency Bands for 5G 41 3.4.1 Bands Identified for IMT and Under Study in ITU¿R 41 3.4.2 Further Potential Frequency Bands 43 3.4.3 5G Roadmaps 44 3.5 Spectrum Usage Aspects at High Frequencies 44 3.5.1 Propagation Challenges 45 3.5.2 Beamforming and 5G Mobile Coverage 45 3.5.3 Analysis of Deployment Scenarios 46 3.5.4 Coexistence of 5G Systems and Fixed Service Links 47 3.5.5 Coexistence under License¿exempt Operation 48 3.6 Spectrum Management 49 3.6.1 Evolutions in Dynamic Spectrum Management 49 3.6.2 Functional Spectrum Management Architecture 51 3.7 Summary and Outlook 53 References 54 4 Channel Modeling 57Shangbin Wu, Sinh L. H. Nguyen and Raffaele D'Errico 4.1 Introduction 57 4.2 Core Features of New Channel Models 59 4.2.1 Path Loss 59 4.2.2 LOS Probability 61 4.2.3 O2I Penetration Loss 63 4.2.4 Fast Fading Generation 65 4.3 Additional Features of New Channel Models 65 4.3.1 Large Bandwidths and Large Antenna Arrays 65 4.3.2 Spatial Consistency 67 4.3.3 Blockage 68 4.3.4 Correlation Modeling for Multi¿Frequency Simulations 69 4.3.5 Ground Reflection 70 4.3.6 Diffuse Scattering 72 4.3.7 D2D, Mobility, and V2V Channels 72 4.3.8 Oxygen Absorption, Time¿varying Doppler Shift, Multi¿Frequency Simulations, and UE Rotation 73 4.3.9 Map¿based Hybrid Modeling Approach 74 4.4 Summary and Outlook 74 References 75 Part 2 5G System Architecture and E2E Enablers 79 5 E2E Architecture 81Marco Gramaglia, Alexandros Kaloxylos, Panagiotis Spapis, Xavier Costa, Luis Miguel Contreras, Riccardo Trivisonno, Gerd Zimmermann, Antonio de la Oliva, Peter Rost and Patrick Marsch 5.1 Introduction 81 5.2 Enablers and Design Principles 82 5.2.1 Modularization 82 5.2.2 Network Slicing 82 5.2.3 Network Softwarization 84 5.2.4 Multi¿Tenancy 85 5.2.5 Mobile or Multi¿Access Edge Computing 87 5.3 E2E Architecture Overview 88 5.3.1 Physical Network Architecture 88 5.3.2 CN/RAN Split 90 5.3.3 QoS Architecture 91 5.3.4 Spectrum Sharing Architecture Overview 93 5.3.5 Transport Network 93 5.3.6 Control and Orchestration 95 5.4 Novel Concepts and Architectural Extensions 97 5.4.1 Architecture Modularization for the Core Network 97 5.4.2 RRC States 99 5.4.3 Access¿agnostic 5G Core Network 100 5.4.4 Roaming Support 101 5.4.5 Softwarized Network Control 102 5.4.6 Control/User Plane Split 103 5.5 Internetworking, Migration and Network Evolution 104 5.5.1 Interworking with Earlier 3GPP RATs 105 5.5.2 Interworking with Non¿3GPP Access Networks 107 5.5.3 Network Evolution 111 5.6 Summary and Outlook 112 References 112 6 RAN Architecture 115Patrick Marsch, Navid Nikaein, Mark Doll, Tao Chen and Emmanouil Pateromichelakis 6.1 Introduction 115 6.2 Related Work 116 6.2.1 3gpp 116 6.2.2 5g Ppp 117 6.3 RAN Architecture Requirements 118 6.4 Protocol Stack Architecture and Network Functions 119 6.4.1 Network Functions in a Multi¿AIV and Multi¿Service Context 119 6.4.2 Possible Changes in the 5G Protocol Stack Compared to 4G 121 6.4.3 Possible Service¿specific Protocol Stack Optimization in 5G 124 6.4.4 NF Instantiation for Multi¿Service and Multi¿Tenancy Support 127 6.5 Multi¿Connectivity 129 6.5.1 5G/(e)LTE Multi¿Connectivity 129 6.5.2 5G/5G Multi¿Connectivity 130 6.5.3 5G/Wi¿Fi Multi¿Connectivity 132 6.6 RAN Function Splits and Resulting Logical Network Entities 133 6.6.1 Control Plane/User Plane Split (Vertical Split) 134 6.6.2 Split into Centralized and Decentralized Units (Horizontal Split) 135 6.6.3 Most Relevant Overall Split Constellations 138 6.7 Deployment Scenarios and Related Physical RAN Architectures 141 6.7.1 Possible Physical Architectures Supporting the Deployment Scenarios 142 6.7.2 5G/(e)LTE and 5G Multi¿AIV Co¿Deployment 143 6.8 RAN Programmability and Control 144 6.9 Summary and Outlook 147 References 148 7 Transport Network Architecture 151Anna Tzanakaki, Markos Anastasopoulos, Nathan Gomes, Philippos Assimakopoulos, Josep M. Fàbrega, Michela Svaluto Moreolo, Laia Nadal, Jesús Gutiérrez, Vladica Sark, Eckhard Grass, Daniel Camps¿Mur, Antonio de la Oliva, Nuria Molner, Xavier Costa Perez, Josep Mangues, Ali Yaver, Paris Flegkas, Nikos Makris, Thanasis Korakis and Dimitra Simeonidou 7.1 Introduction 151 7.2 Architecture Definition 153 7.2.1 User Plane 153 7.2.2 Control Plane 155 7.3 Technology Options and Protocols 158 7.3.1 Wireless Technologies 158 7.3.2 Optical Transport 161 7.3.3 Ethernet 165 7.4 Self¿Backhauling 165 7.4.1 Comparison with Legacy LTE Relaying 166 7.4.2 Technical Aspects of Self¿Backhauling 167 7.5 Technology Integration and Interfacing 168 7.5.1 Framing, Protocol Adaptation, Flow Identification and Control 168 7.5.2 PBB/MPLS Framing to Carry FH/BH and its Multi¿Tenancy Characteristic 169 7.6 Transport Network Optimization and Performance Evaluation 170 7.6.1 Evaluation of Joint FH and BH Transport 170 7.6.2 Experimental Evaluation of Layer¿2 Functional Splits 173 7.6.3 Monitoring in the Ethernet Fronthaul 174 7.7 Summary 178 References 178 8 Network Slicing 181Alexandros Kaloxylos, Christian Mannweiler, Gerd Zimmermann, Marco Di Girolamo, Patrick Marsch, Jakob Belschner, Anna Tzanakaki, Riccardo Trivisonno, Ömer Bulakc¿¿, Panagiotis Spapis, Peter Rost, Paul Arnold and Navid Nikaein 8.1 Introduction 181 8.2 Slice Realization in the Different Network Domains 183 8.2.1 Realization of Slicing in the Core Network 183 8.2.2 Slice Support on the Transport Network 186 8.2.3 Impact of Slicing on the Radio Access Network 187 8.2.4 Slice Support Across Different Administrative Domains 191 8.2.5 E2E Slicing: A Detailed Example 193 8.3 Operational Aspects 196 8.3.1 Slice Selection 196 8.3.2 Connecting to Multiple Slices 197 8.3.3 Slice Isolation 197 8.3.4 Radio Resource Management Among Slices 198 8.3.5 Managing Network Slices 199 8.4 Summary and Outlook 202 References 204 9 Security 207Carolina Canales¿Valenzuela, Madalina Baltatu, Luciana Costa, Kai Habel, Volker Jungnickel, Geza Koczian, Felix Ngobigha, Michael C. Parker, Muhammad Shuaib Siddiqui, Eleni Trouva and Stuart D. Walker 9.1 Introduction 207 9.2 Threat Landscape 208 9.3 5G Security Requirements 209 9.3.1 Adoption of Software¿defined Networking and Virtualization Technologies 209 9.3.2 Security Automation and Management 210 9.3.3 Slice Isolation and Protection Against Side Channel Attacks in Multi¿Tenant Environments 211 9.3.4 Monitoring and Analytics for Security Purposes 211 9.4 5G Security Architecture 211 9.4.1 Overall Description 211 9.4.2 Infrastructure Security 213 9.4.3 Physical Layer Security 216 9.4.4 5G RAN Security 217 9.4.5 Service¿level Security 221 9.4.6 A Control and Management Framework for Automated Security 221 9.5 Summary 224 References 224 10 Network Management and Orchestration 227Luis M. Contreras, Víctor López, Ricard Vilalta, Ramon Casellas, Raúl Muñoz, Wei Jiang, Hans Schotten, Jose Alcaraz¿Calero, Qi Wang, Balázs Sonkoly and László Toka 10.1 Introduction 227 10.2 Network Management and Orchestration Through SDN and NFV 228 10.2.1 Software-Defined Networking 229 10.2.2 Network Function Virtualization 232 10.3 Enablers of Management and Orchestration 233 10.3.1 Open and Standardized Interfaces 234 10.3.2 Modeling of Services and Devices 237 10.4 Orchestration in Multi¿Domain and Multi¿Technology Scenarios 238 10.4.1 Multi¿Domain Scenarios 238 10.4.2 Multi¿Technology Scenarios 244 10.5 Software¿Defined Networking for 5G 245 10.5.1 Xhaul Software¿Defined Networking 245 10.5.2 Core Transport Networks 250 10.6 Network Function Virtualization in 5G Environments 251 10.7 Autonomic Network Management in 5G 252 10.7.1 Motivation 252 10.7.2 Architecture of Autonomic Management 254 10.7.3 Autonomic Control Loop 255 10.7.4 Enabling Algorithms 257 10.8 Summary 258 References 259 Part 3 5G Functional Design 263 11 Antenna, PHY and MAC Design 265Frank Schaich, Catherine Douillard, Charbel Abdel Nour, Malte Schellmann, Tommy Svensson, Hao Lin, Honglei Miao, Hua Wang, Jian Luo, Milos Tesanovic, Nuno Pratas, Sandra Roger and Thorsten Wild 11.1 Introduction 265 11.2 PHY and MAC Design Criteria and Harmonization 267 11.3 Waveform Design 269...
Details
Erscheinungsjahr: 2018
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781119425120
ISBN-10: 1119425123
Sprache: Englisch
Einband: Gebunden
Redaktion: Marsch, Patrick
Bulakci, Ömer
Queseth, Olav
Boldi, Mauro
Hersteller: Wiley
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 241 x 192 x 38 mm
Von/Mit: Patrick Marsch (u. a.)
Erscheinungsdatum: 11.06.2018
Gewicht: 1,241 kg
Artikel-ID: 110945050
Sicherheitshinweis