Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Complexity of Lattice Problems
A Cryptographic Perspective
Taschenbuch von Shafi Goldwasser (u. a.)
Sprache: Englisch

221,95 €*

-17 % UVP 267,49 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De­ spite their apparent simplicity, lattices hide a rich combinatorial struc­ ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap­ plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.
Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De­ spite their apparent simplicity, lattices hide a rich combinatorial struc­ ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap­ plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.
Inhaltsverzeichnis
1 Basics.- 1 Lattices.- 2 Computational problems.- 3 Notes.- 2. Approximation Algorithms.- 1 Solving SVP in dimension.- 2 Approximating SVP in dimension n.- 3 Approximating CVP in dimension n.- 4 Notes.- 3. Closest Vector Problem.- 1 Decision versus Search.- 2 NP-completeness.- 3 SVP is not harder than CVP.- 4 Inapproximability of CVP.- 5 CVP with preprocessing.- 6 Notes.- 4. Shortest Vector Problem.- 1 Kannan's homogenization technique.- 2 The Ajtai-Micciancio embedding.- 3 NP-hardnessofSVP.- 4 Notes.- 5. Sphere Packings.- 1 Packing Points in Small Spheres.- 2 The Exponential Sphere Packing.- 3 Integer Lattices.- 4 Deterministic construction.- 5 Notes.- 6. Low-Degree Hypergraphs.- 1 Sauer's Lemma.- 2 Weak probabilistic construction.- 3 Strong probabilistic construction.- 4 Notes.- 7. Basis Reduction Problems.- 1 Successive minima and Minkowski's reduction.- 2 Orthogonality defect and KZ reduction.- 3 Small rectangles and the covering radius.- 4 Notes.- 8. Cryptographic Functions.- 1 General techniques.- 2 Collision resistant hash functions.- 3 Encryption Functions.- 4 Notes.- 9. Interactive Proof Systems.- 1 Closest vector problem.- 2 Shortest vector problem.- 3 Treating other norms.- 4 What does it mean?.- 5 Notes.- References.
Details
Erscheinungsjahr: 2012
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
220 S.
ISBN-13: 9781461352938
ISBN-10: 1461352932
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Goldwasser, Shafi
Micciancio, Daniele
Auflage: Softcover reprint of the original 1st edition 2002
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 13 mm
Von/Mit: Shafi Goldwasser (u. a.)
Erscheinungsdatum: 29.10.2012
Gewicht: 0,365 kg
Artikel-ID: 105998171
Inhaltsverzeichnis
1 Basics.- 1 Lattices.- 2 Computational problems.- 3 Notes.- 2. Approximation Algorithms.- 1 Solving SVP in dimension.- 2 Approximating SVP in dimension n.- 3 Approximating CVP in dimension n.- 4 Notes.- 3. Closest Vector Problem.- 1 Decision versus Search.- 2 NP-completeness.- 3 SVP is not harder than CVP.- 4 Inapproximability of CVP.- 5 CVP with preprocessing.- 6 Notes.- 4. Shortest Vector Problem.- 1 Kannan's homogenization technique.- 2 The Ajtai-Micciancio embedding.- 3 NP-hardnessofSVP.- 4 Notes.- 5. Sphere Packings.- 1 Packing Points in Small Spheres.- 2 The Exponential Sphere Packing.- 3 Integer Lattices.- 4 Deterministic construction.- 5 Notes.- 6. Low-Degree Hypergraphs.- 1 Sauer's Lemma.- 2 Weak probabilistic construction.- 3 Strong probabilistic construction.- 4 Notes.- 7. Basis Reduction Problems.- 1 Successive minima and Minkowski's reduction.- 2 Orthogonality defect and KZ reduction.- 3 Small rectangles and the covering radius.- 4 Notes.- 8. Cryptographic Functions.- 1 General techniques.- 2 Collision resistant hash functions.- 3 Encryption Functions.- 4 Notes.- 9. Interactive Proof Systems.- 1 Closest vector problem.- 2 Shortest vector problem.- 3 Treating other norms.- 4 What does it mean?.- 5 Notes.- References.
Details
Erscheinungsjahr: 2012
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
220 S.
ISBN-13: 9781461352938
ISBN-10: 1461352932
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Goldwasser, Shafi
Micciancio, Daniele
Auflage: Softcover reprint of the original 1st edition 2002
Hersteller: Springer US
Springer New York
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 13 mm
Von/Mit: Shafi Goldwasser (u. a.)
Erscheinungsdatum: 29.10.2012
Gewicht: 0,365 kg
Artikel-ID: 105998171
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte