Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Die innere Geometrie der metrischen Räume
Taschenbuch von Willi Rinow
Sprache: Deutsch

69,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Die innere Geometrie einer Fläche ist die Lehre von denjenigen Eigenschaften, die bei isometrischen Abbildungen ungeändert bleiben, also nur von ihrer ersten Fundamentalform abhängen. Sie wurde von C. F. GAUSS durch die Entdeckung begründet, daß das Produkt der Hauptkrümmungsradien einer Fläche eine isometrische Invariante ist. B. RIEMANN dehnte diese Theorie in seiner Habilitationsschrift auf mehr­ dimensionale und damit gleichzeitig auf abstrakte Mannigfaltigkeiten aus. Während man zunächst nur das Studium solcher Mannigfaltigkeiten in Betracht zog, deren Bogenelement durch die Quadratwurzel aus einer quadratischen Differentialform gegeben ist, entwickelte P. FINSLER in seiner Dissertation die innere Geometrie auf der Grundlage eines all­ gemeinen Bogenelementes, eine Möglichkeit, die bereits B. RIEMANN erkannt hatte. Seit den klassischen Untersuchungen von J. HADAMARD über Flächen konstanter negativer Krümmung und von D. HILBERT über die Existenz von Extremalen bei Variationsproblemen setzte sich die Erkenntnis immer mehr durch, daß ein großer Teil der Methoden, insbesondere diejenigen, welche in der Differentialgeometrie im Großen entwickelt worden sind, nur die topologische und metrische Struktur der Mannigfaltigkeiten, nicht aber ihre Differenzierbarkeitsstruktur be­ nötigen. Der von FREcHET geschaffene Begriff des metrischen Raumes ermöglichte es, die innere Geometrie auf einer von Differenzierbarkeits­ voraussetzungen freien Grundlage zu stellen. Zunächst stand jedoch die Topologie der metrischen Räume im Vordergrund des Interesses. Erst mit K. MENGER setzte ein systematisches Studium der isometrischen Invarianten ein. Inzwischen ist eine umfangreiche Literatur entstanden. Die Hauptergebnisse sind in den drei Büchern von A. D. ALEXANDROW[6J, L. M. BLuMENTHAL [1J und H.
Die innere Geometrie einer Fläche ist die Lehre von denjenigen Eigenschaften, die bei isometrischen Abbildungen ungeändert bleiben, also nur von ihrer ersten Fundamentalform abhängen. Sie wurde von C. F. GAUSS durch die Entdeckung begründet, daß das Produkt der Hauptkrümmungsradien einer Fläche eine isometrische Invariante ist. B. RIEMANN dehnte diese Theorie in seiner Habilitationsschrift auf mehr­ dimensionale und damit gleichzeitig auf abstrakte Mannigfaltigkeiten aus. Während man zunächst nur das Studium solcher Mannigfaltigkeiten in Betracht zog, deren Bogenelement durch die Quadratwurzel aus einer quadratischen Differentialform gegeben ist, entwickelte P. FINSLER in seiner Dissertation die innere Geometrie auf der Grundlage eines all­ gemeinen Bogenelementes, eine Möglichkeit, die bereits B. RIEMANN erkannt hatte. Seit den klassischen Untersuchungen von J. HADAMARD über Flächen konstanter negativer Krümmung und von D. HILBERT über die Existenz von Extremalen bei Variationsproblemen setzte sich die Erkenntnis immer mehr durch, daß ein großer Teil der Methoden, insbesondere diejenigen, welche in der Differentialgeometrie im Großen entwickelt worden sind, nur die topologische und metrische Struktur der Mannigfaltigkeiten, nicht aber ihre Differenzierbarkeitsstruktur be­ nötigen. Der von FREcHET geschaffene Begriff des metrischen Raumes ermöglichte es, die innere Geometrie auf einer von Differenzierbarkeits­ voraussetzungen freien Grundlage zu stellen. Zunächst stand jedoch die Topologie der metrischen Räume im Vordergrund des Interesses. Erst mit K. MENGER setzte ein systematisches Studium der isometrischen Invarianten ein. Inzwischen ist eine umfangreiche Literatur entstanden. Die Hauptergebnisse sind in den drei Büchern von A. D. ALEXANDROW[6J, L. M. BLuMENTHAL [1J und H.
Inhaltsverzeichnis
Erstes Kapitel: Metrische Geometrie und Topologie.- Zweites Kapitel: Stetige Abbildungen.- Drittes Kapitel: Die innere Metrik.- Viertes Kapitel: Theorie der Kürzesten.- Fünftes Kapitel: Fundamentalgruppe und Überlagerungsräume.- Sechstes Kapitel: Existenzsätze für geodätische Kurven.- Siebentes Kapitel: Theorie der Krümmung.- Achtes Kapitel: Das Clifford-Kleinsche Raumformenproblem.- Neuntes Kapitel: Räume der Krümmung ? 0.- Zehntes Kapitel: Sphäroide und Räume vom elliptischen Typ.- Namen- und Sachverzeichnis.
Details
Erscheinungsjahr: 2013
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xv
520 S.
ISBN-13: 9783662115008
ISBN-10: 366211500X
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Rinow, Willi
Auflage: Softcover reprint of the original 1st edition 1961
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 29 mm
Von/Mit: Willi Rinow
Erscheinungsdatum: 10.11.2013
Gewicht: 0,809 kg
Artikel-ID: 105579092
Inhaltsverzeichnis
Erstes Kapitel: Metrische Geometrie und Topologie.- Zweites Kapitel: Stetige Abbildungen.- Drittes Kapitel: Die innere Metrik.- Viertes Kapitel: Theorie der Kürzesten.- Fünftes Kapitel: Fundamentalgruppe und Überlagerungsräume.- Sechstes Kapitel: Existenzsätze für geodätische Kurven.- Siebentes Kapitel: Theorie der Krümmung.- Achtes Kapitel: Das Clifford-Kleinsche Raumformenproblem.- Neuntes Kapitel: Räume der Krümmung ? 0.- Zehntes Kapitel: Sphäroide und Räume vom elliptischen Typ.- Namen- und Sachverzeichnis.
Details
Erscheinungsjahr: 2013
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xv
520 S.
ISBN-13: 9783662115008
ISBN-10: 366211500X
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Rinow, Willi
Auflage: Softcover reprint of the original 1st edition 1961
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 29 mm
Von/Mit: Willi Rinow
Erscheinungsdatum: 10.11.2013
Gewicht: 0,809 kg
Artikel-ID: 105579092
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte