Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Dynamic Systems Models
New Methods of Parameter and State Estimation
Buch von Josif A. Boguslavskiy
Sprache: Englisch

91,40 €*

-15 % UVP 106,99 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics.
Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated.
The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamics or biological sequence analysis. The technical material is illustrated by the use of worked examples and methods for training the algorithms are included.
Dynamic Systems Models provides researchers in aerospatial engineering, bioinformatics and financial mathematics (as well as computer scientists interested in any of these fields) with a reliable and effective numerical method for nonlinear estimation and solving boundary problems when carrying out control design. It will also be of interest to academic researchers studying inverse problems and their solution.
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics.
Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated.
The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamics or biological sequence analysis. The technical material is illustrated by the use of worked examples and methods for training the algorithms are included.
Dynamic Systems Models provides researchers in aerospatial engineering, bioinformatics and financial mathematics (as well as computer scientists interested in any of these fields) with a reliable and effective numerical method for nonlinear estimation and solving boundary problems when carrying out control design. It will also be of interest to academic researchers studying inverse problems and their solution.
Zusammenfassung

Lays down a new method of solving inverse problems equations with weaker requirements than existing methods

Reinforces basic principles and demonstrates methodical efficiency using non-trivial applied examples

Relevant to many applications from bioinformatics through aerodynamics to financial mathematics

Includes supplementary material: [...]

Inhaltsverzeichnis

From the Contents: Linear Estimators of a Random-Parameter Vector.-Basis of the Method of Polynomial Approximation.- Polynomial Approximation and Optimization of Control.- Polynomial Approximation Technique Applied to Inverse Vector Functions.- Identification of Parameters of Nonlinear Dynamical Systems: Smoothing, Filtering and Forecasting the State Vector.- Estimating Status Vectors from Sight Angles.- Estimation of Parameters of Stochastic Models.- Designing the Control of Motion to a Target Point of Phase Space.- Inverse Problems of Dynamics Algorithm for Identifying Parameters of an Aircraft

Details
Erscheinungsjahr: 2016
Fachbereich: Theoretische Physik
Genre: Mathematik, Medizin, Naturwissenschaften, Physik, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xx
201 S.
ISBN-13: 9783319040356
ISBN-10: 3319040359
Sprache: Englisch
Herstellernummer: 86317055
Einband: Gebunden
Autor: Boguslavskiy, Josif A.
Redaktion: Borodovsky, Mark
Herausgeber: Mark Borodovsky
Auflage: 1st edition 2016
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 18 mm
Von/Mit: Josif A. Boguslavskiy
Erscheinungsdatum: 30.03.2016
Gewicht: 0,506 kg
Artikel-ID: 105211261
Zusammenfassung

Lays down a new method of solving inverse problems equations with weaker requirements than existing methods

Reinforces basic principles and demonstrates methodical efficiency using non-trivial applied examples

Relevant to many applications from bioinformatics through aerodynamics to financial mathematics

Includes supplementary material: [...]

Inhaltsverzeichnis

From the Contents: Linear Estimators of a Random-Parameter Vector.-Basis of the Method of Polynomial Approximation.- Polynomial Approximation and Optimization of Control.- Polynomial Approximation Technique Applied to Inverse Vector Functions.- Identification of Parameters of Nonlinear Dynamical Systems: Smoothing, Filtering and Forecasting the State Vector.- Estimating Status Vectors from Sight Angles.- Estimation of Parameters of Stochastic Models.- Designing the Control of Motion to a Target Point of Phase Space.- Inverse Problems of Dynamics Algorithm for Identifying Parameters of an Aircraft

Details
Erscheinungsjahr: 2016
Fachbereich: Theoretische Physik
Genre: Mathematik, Medizin, Naturwissenschaften, Physik, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xx
201 S.
ISBN-13: 9783319040356
ISBN-10: 3319040359
Sprache: Englisch
Herstellernummer: 86317055
Einband: Gebunden
Autor: Boguslavskiy, Josif A.
Redaktion: Borodovsky, Mark
Herausgeber: Mark Borodovsky
Auflage: 1st edition 2016
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 18 mm
Von/Mit: Josif A. Boguslavskiy
Erscheinungsdatum: 30.03.2016
Gewicht: 0,506 kg
Artikel-ID: 105211261
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte