Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Interactive Task Learning
Humans, Robots, and Agents Acquiring New Tasks through Natural Interactions
Buch von John E. Laird (u. a.)
Sprache: Englisch

56,65 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Experts from a range of disciplines explore how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other.Humans are not limited to a fixed set of innate or preprogrammed tasks. We learn quickly through language and other forms of natural interaction, and we improve our performance and teach others what we have learned. Understanding the mechanisms that underlie the acquisition of new tasks through natural interaction is an ongoing challenge. Advances in artificial intelligence, cognitive science, and robotics are leading us to future systems with human-like capabilities. A huge gap exists, however, between the highly specialized niche capabilities of current machine learning systems and the generality, flexibility, and in situ robustness of human instruction and learning. Drawing on expertise from multiple disciplines, this Strüngmann Forum Report explores how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other.The contributors consider functional knowledge requirements, the ontology of interactive task learning, and the representation of task knowledge at multiple levels of abstraction. They explore natural forms of interactions among humans as well as the use of interaction to teach robots and software agents new tasks in complex, dynamic environments. They discuss research challenges and opportunities, including ethical considerations, and make proposals to further understanding of interactive task learning and create new capabilities in assistive robotics, healthcare, education, training, and gaming.Contributors Tony Belpaeme, Katrien Beuls, Maya Cakmak, Joyce Y. Chai, Franklin Chang, Ropafadzo Denga, Marc Destefano, Mark d'Inverno, Kenneth D. Forbus, Simon Garrod, Kevin A. Gluck, Wayne D. Gray, James Kirk, Kenneth R. Koedinger, Parisa Kordjamshidi, John E. Laird, Christian Lebiere, Stephen C. Levinson, Elena Lieven, John K. Lindstedt, Aaron Mininger, Tom Mitchell, Shiwali Mohan, Ana Paiva, Katerina Pastra, Peter Pirolli, Roussell Rahman, Charles Rich, Katharina J. Rohlfing, Paul S. Rosenbloom, Nele Russwinkel, Dario D. Salvucci, Matthew-Donald D. Sangster, Matthias Scheutz, Julie A. Shah, Candace L. Sidner, Catherine Sibert, Michael Spranger, Luc Steels, Suzanne Stevenson, Terrence C. Stewart, Arthur Still, Andrea Stocco, Niels Taatgen, Andrea L. Thomaz, J. Gregory Trafton, Han L. J. van der Maas, Paul Van Eecke, Kurt VanLehn, Anna-Lisa Vollmer, Janet Wiles, Robert E. Wray III, Matthew Yee-King
Experts from a range of disciplines explore how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other.Humans are not limited to a fixed set of innate or preprogrammed tasks. We learn quickly through language and other forms of natural interaction, and we improve our performance and teach others what we have learned. Understanding the mechanisms that underlie the acquisition of new tasks through natural interaction is an ongoing challenge. Advances in artificial intelligence, cognitive science, and robotics are leading us to future systems with human-like capabilities. A huge gap exists, however, between the highly specialized niche capabilities of current machine learning systems and the generality, flexibility, and in situ robustness of human instruction and learning. Drawing on expertise from multiple disciplines, this Strüngmann Forum Report explores how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other.The contributors consider functional knowledge requirements, the ontology of interactive task learning, and the representation of task knowledge at multiple levels of abstraction. They explore natural forms of interactions among humans as well as the use of interaction to teach robots and software agents new tasks in complex, dynamic environments. They discuss research challenges and opportunities, including ethical considerations, and make proposals to further understanding of interactive task learning and create new capabilities in assistive robotics, healthcare, education, training, and gaming.Contributors Tony Belpaeme, Katrien Beuls, Maya Cakmak, Joyce Y. Chai, Franklin Chang, Ropafadzo Denga, Marc Destefano, Mark d'Inverno, Kenneth D. Forbus, Simon Garrod, Kevin A. Gluck, Wayne D. Gray, James Kirk, Kenneth R. Koedinger, Parisa Kordjamshidi, John E. Laird, Christian Lebiere, Stephen C. Levinson, Elena Lieven, John K. Lindstedt, Aaron Mininger, Tom Mitchell, Shiwali Mohan, Ana Paiva, Katerina Pastra, Peter Pirolli, Roussell Rahman, Charles Rich, Katharina J. Rohlfing, Paul S. Rosenbloom, Nele Russwinkel, Dario D. Salvucci, Matthew-Donald D. Sangster, Matthias Scheutz, Julie A. Shah, Candace L. Sidner, Catherine Sibert, Michael Spranger, Luc Steels, Suzanne Stevenson, Terrence C. Stewart, Arthur Still, Andrea Stocco, Niels Taatgen, Andrea L. Thomaz, J. Gregory Trafton, Han L. J. van der Maas, Paul Van Eecke, Kurt VanLehn, Anna-Lisa Vollmer, Janet Wiles, Robert E. Wray III, Matthew Yee-King
Über den Autor
Kevin A. Gluck is a Principal Cognitive Scientist at the U.S. Air Force Research Laboratory.

John E. Laird is John L. Tishman Professor of Engineering in the Computer Science and Engineering Department at the University of Michigan.
Details
Empfohlen (von): 18
Erscheinungsjahr: 2019
Fachbereich: Grundlagen (Methodik & Statistik)
Genre: Importe, Psychologie
Rubrik: Geisteswissenschaften
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780262038829
ISBN-10: 026203882X
Sprache: Englisch
Einband: Gebunden
Autor: Gluck, Kevin A.
Redaktion: Laird, John E.
Gluck, Kevin A.
Hersteller: MIT Press Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 161 x 238 x 26 mm
Von/Mit: John E. Laird (u. a.)
Erscheinungsdatum: 10.09.2019
Gewicht: 0,832 kg
Artikel-ID: 127700547
Über den Autor
Kevin A. Gluck is a Principal Cognitive Scientist at the U.S. Air Force Research Laboratory.

John E. Laird is John L. Tishman Professor of Engineering in the Computer Science and Engineering Department at the University of Michigan.
Details
Empfohlen (von): 18
Erscheinungsjahr: 2019
Fachbereich: Grundlagen (Methodik & Statistik)
Genre: Importe, Psychologie
Rubrik: Geisteswissenschaften
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9780262038829
ISBN-10: 026203882X
Sprache: Englisch
Einband: Gebunden
Autor: Gluck, Kevin A.
Redaktion: Laird, John E.
Gluck, Kevin A.
Hersteller: MIT Press Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 161 x 238 x 26 mm
Von/Mit: John E. Laird (u. a.)
Erscheinungsdatum: 10.09.2019
Gewicht: 0,832 kg
Artikel-ID: 127700547
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte