Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whoseordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whoseordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
Inhaltsverzeichnis
Iterated Truncation ; 1.7 Localization at Odd Primes; 1.8 Summary; 1.9 The Interleaf Category; 1.10 Continuity; Properties of Homology Truncation; 1.11 Fiberwise Homology Truncation; 1.12 Remarks on Perverse Links and Basic Sets Spaces; 2.1 Reflective Algebra; 2.2 The Intersection Space in the Isolated Singularities Case; 2.3 Independence of Choices of the Intersection Space Homology; 2.4 The Homotopy Type of Intersection Spaces for Interleaf Links ; 2.5 The Middle Dimension; 2.6 Cap products for Middle Perversities; 2.7 L-Theory; 2.8 Intersection Vector Bundles and K-Theory; 2.9 Beyond Isolated Singularities; 3 String Theory; 3.1 Introduction3.2 The Topology of 3-Cycles in 6-Manifolds; 3.3 The Conifold Transition; 3.4 Breakdown of the Low Energy Effective Field Theory Near a Singularity; 3.5 Massless D-Branes; 3.6 Cohomology and Massless States; 3.7 The Homology of Intersection Spaces and Massless D-Branes; 3.8 Mirror Symmetry; 3.9 An Example; References; Index
Details
Erscheinungsjahr: 2010
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xvi
224 S.
ISBN-13: 9783642125881
ISBN-10: 3642125883
Sprache: Englisch
Herstellernummer: 978-3-642-12588-1
Autor: Banagl, Markus
Hersteller: Springer
Springer, Berlin
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Abbildungen: XVI, 224 p.
Maße: 237 x 157 x 14 mm
Von/Mit: Markus Banagl
Erscheinungsdatum: 10.07.2010
Gewicht: 0,364 kg
Artikel-ID: 101225737