Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Kombination Künstlicher Neuronaler Netze
Zur Prognose von Wechselkursen
Taschenbuch von Frank Richter
Sprache: Deutsch

79,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Frank Richter präsentiert Möglichkeiten der Kombination Künstlicher Neuronaler Netze und belegt anhand einer empirischen Untersuchung zur Vorhersage der Relation zwischen US-Dollar und DM die Vorteile von Kombinationsmodellen.
Frank Richter präsentiert Möglichkeiten der Kombination Künstlicher Neuronaler Netze und belegt anhand einer empirischen Untersuchung zur Vorhersage der Relation zwischen US-Dollar und DM die Vorteile von Kombinationsmodellen.
Über den Autor
Dr. Frank Richter promovierte bei Prof. Dr. Heinz Schaefer am Institut für Konjunktur und Strukturforschung der Universität Bremen. Er ist als Spezialist im Bereich analytischer Anwendungen tätig.
Zusammenfassung
Wechselkursprognosen gelten als äußerst problematisch. Künstliche Neuronale Netze werden in solch schwierigen Fällen häufig eingesetzt, denn sie bieten sich an, um nichtlineare Zusammenhänge im ökonomischen Kontext zu untersuchen. Allerdings können einzelne Künstliche Neuronale Netze ihrer Aufgabe oft nicht gerecht werden.

Frank Richter zeigt, dass sich bessere Prognosen erstellen lassen, wenn statt eines einzelnen Modells eine Modellkombination verwendet wird, die die Stärken einzelner Modelle nutzt, ihre Schwächen hingegen weitestgehend ausschaltet. Er präsentiert Möglichkeiten der Kombination Künstlicher Neuronaler Netze und belegt anhand einer empirischen Untersuchung zur Vorhersage der Relation zwischen US-Dollar und DM die Vorteile von Kombinationsmodellen. Es zeichnet sich ab, dass für Wechselkursprognosen die Verwendung einer adäquaten Nutzenfunktion eine wichtige Rolle spielt.
Inhaltsverzeichnis
1 Einleitung.- 1.1 Problemstellung.- 1.2 Kapitelübersicht.- 2 Prognose einer ökonomischen Zeitreihe.- 2.1 Prognosen und Modelle.- 2.2 Wechselkursprognosen.- 3 Optimale Modelle.- 3.1 Der bedingte Erwartungswert.- 3.2 Separierung des Inputraumes.- 3.3 Bias-Varianz-Dilemma.- 4 Fehlermaße.- 4.1 Der quadratische Fehler.- 4.2 Die mittlere absolute Abweichung.- 4.3 Sharpe-Ratio.- 5 Kombinationsmodelle.- 5.1 Kombination einzelner Modelle.- 5.2 Kombination von Modulen.- 5.3 Gruppen-Ansatz versus modularer Ansatz.- 6 Künstliche Neuronale Netze.- 6.1 Struktur und Funktionsweise von KNN.- 6.2 Abbildungskapazität.- 6.3 KNN zur Funktionsapproximation.- 6.4 Lernen mit KNN.- 6.5 Datenvorverarbeitung.- 6.6 Lernverfahren für KNN.- 6.7 Komplexitätskontrolle.- 7 Prognose einer Finanzzeitreihe mit KNN.- 7.1 Finanzzeitreihe USD/DEM.- 7.2 Monte-Carlo-Simulation.- 7.3 Inputs.- 7.4 Beispieldaten.- 7.5 Topologie.- 7.6 Lernverfahren.- 7.6.2 Abbruchkriterium.- 7.7 Performance-Maße für die Prognosemodelle.- 7.8 Ergebnisse des Trainings.- 7.9 Modellauswahl.- 7.10 Unterschiedliche Fehlermaße.- 7.11 Modellkombination mit einzelnen KNN.- 8 Mixture Density Networks.- 8.1 Inverse Probleme.- 8.2 Aufbau eines MDN-Modells.- 8.3 Beispielmodelle für ein inverses Problem.- 8.4 Modellierung USD/DEM mit MDN.- 9 Evolution von KNN und MDN.- 9.1 Genetische Algorithmen.- 9.2 Evolution von MDN-Modellen.- 9.3 Anwendung.- 10 Schlussbetrachtungen.
Details
Erscheinungsjahr: 2003
Fachbereich: Management
Genre: Recht, Sozialwissenschaften, Wirtschaft
Rubrik: Recht & Wirtschaft
Medium: Taschenbuch
Inhalt: xviii
259 S.
15 s/w Illustr.
259 S. 15 Abb.
ISBN-13: 9783824479009
ISBN-10: 3824479001
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Richter, Frank
Hersteller: Deutscher Universitätsverlag
Verantwortliche Person für die EU: Springer Gabler in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 210 x 148 x 16 mm
Von/Mit: Frank Richter
Erscheinungsdatum: 23.09.2003
Gewicht: 0,366 kg
Artikel-ID: 106372680
Über den Autor
Dr. Frank Richter promovierte bei Prof. Dr. Heinz Schaefer am Institut für Konjunktur und Strukturforschung der Universität Bremen. Er ist als Spezialist im Bereich analytischer Anwendungen tätig.
Zusammenfassung
Wechselkursprognosen gelten als äußerst problematisch. Künstliche Neuronale Netze werden in solch schwierigen Fällen häufig eingesetzt, denn sie bieten sich an, um nichtlineare Zusammenhänge im ökonomischen Kontext zu untersuchen. Allerdings können einzelne Künstliche Neuronale Netze ihrer Aufgabe oft nicht gerecht werden.

Frank Richter zeigt, dass sich bessere Prognosen erstellen lassen, wenn statt eines einzelnen Modells eine Modellkombination verwendet wird, die die Stärken einzelner Modelle nutzt, ihre Schwächen hingegen weitestgehend ausschaltet. Er präsentiert Möglichkeiten der Kombination Künstlicher Neuronaler Netze und belegt anhand einer empirischen Untersuchung zur Vorhersage der Relation zwischen US-Dollar und DM die Vorteile von Kombinationsmodellen. Es zeichnet sich ab, dass für Wechselkursprognosen die Verwendung einer adäquaten Nutzenfunktion eine wichtige Rolle spielt.
Inhaltsverzeichnis
1 Einleitung.- 1.1 Problemstellung.- 1.2 Kapitelübersicht.- 2 Prognose einer ökonomischen Zeitreihe.- 2.1 Prognosen und Modelle.- 2.2 Wechselkursprognosen.- 3 Optimale Modelle.- 3.1 Der bedingte Erwartungswert.- 3.2 Separierung des Inputraumes.- 3.3 Bias-Varianz-Dilemma.- 4 Fehlermaße.- 4.1 Der quadratische Fehler.- 4.2 Die mittlere absolute Abweichung.- 4.3 Sharpe-Ratio.- 5 Kombinationsmodelle.- 5.1 Kombination einzelner Modelle.- 5.2 Kombination von Modulen.- 5.3 Gruppen-Ansatz versus modularer Ansatz.- 6 Künstliche Neuronale Netze.- 6.1 Struktur und Funktionsweise von KNN.- 6.2 Abbildungskapazität.- 6.3 KNN zur Funktionsapproximation.- 6.4 Lernen mit KNN.- 6.5 Datenvorverarbeitung.- 6.6 Lernverfahren für KNN.- 6.7 Komplexitätskontrolle.- 7 Prognose einer Finanzzeitreihe mit KNN.- 7.1 Finanzzeitreihe USD/DEM.- 7.2 Monte-Carlo-Simulation.- 7.3 Inputs.- 7.4 Beispieldaten.- 7.5 Topologie.- 7.6 Lernverfahren.- 7.6.2 Abbruchkriterium.- 7.7 Performance-Maße für die Prognosemodelle.- 7.8 Ergebnisse des Trainings.- 7.9 Modellauswahl.- 7.10 Unterschiedliche Fehlermaße.- 7.11 Modellkombination mit einzelnen KNN.- 8 Mixture Density Networks.- 8.1 Inverse Probleme.- 8.2 Aufbau eines MDN-Modells.- 8.3 Beispielmodelle für ein inverses Problem.- 8.4 Modellierung USD/DEM mit MDN.- 9 Evolution von KNN und MDN.- 9.1 Genetische Algorithmen.- 9.2 Evolution von MDN-Modellen.- 9.3 Anwendung.- 10 Schlussbetrachtungen.
Details
Erscheinungsjahr: 2003
Fachbereich: Management
Genre: Recht, Sozialwissenschaften, Wirtschaft
Rubrik: Recht & Wirtschaft
Medium: Taschenbuch
Inhalt: xviii
259 S.
15 s/w Illustr.
259 S. 15 Abb.
ISBN-13: 9783824479009
ISBN-10: 3824479001
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Richter, Frank
Hersteller: Deutscher Universitätsverlag
Verantwortliche Person für die EU: Springer Gabler in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 210 x 148 x 16 mm
Von/Mit: Frank Richter
Erscheinungsdatum: 23.09.2003
Gewicht: 0,366 kg
Artikel-ID: 106372680
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte

Taschenbuch
-7 %