86,80 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Chapter 1: Biochemistry Concepts and Themes
1.1 Science and the Scientific Method
- What is Science?
- What is the Scientific Method?
1.2 Organisms, Cells, Chromosomes, and Genes
- Organisms Belong to Three Distinct Domains of Life
- Cells Are the Structural and Functional Units of All Living Organisms
- Viruses Cannot Live Independently of Cells
- Bacterial Cells Feature a Relatively Simple Architecture and Streamlined Lifestyles
- Eukaryotic Cells Have a Variety of Membranous Organelles
- Cells Contain a Wide Range of Supramolecular Structures
- Major Model Organisms and Systems are Useful in Biochemistry
- The Linear Sequence in DNA Encodes Proteins with Three-Dimensional Structures
1.3 The Organic Chemistry of Biochemistry
- Major Organic Species are Found in Cells
- Macromolecules Are the Major Constituents of Cells
- Molecular Weight and Molecular Mass are Expressed by Distinct Conventions
- Nucleophiles and Electrophiles Define How Many Reactions Proceed
- Cofactors Facilitate Particular Classes of Biochemical Reactions
1.4 A Review of Basic Thermodynamics
- Equilibrium Constants and Rate Constants Describe Distinct but Related Thermodynamic Parameters
- Organisms Transform Energy and Matter from Their Surroundings
- Creating and Maintaining Order Requires Work and Energy
1.5 Using Data Banks
Chapter 2: Water: The Chemistry of Life
2.1 Weak Interactions in Aqueous Systems
- Hydrogen Bonds Give Water Its Unusual Properties
- Water Interacts Electrostatically with Charged Solutes
- Nonpolar Gases Are Poorly Soluble in Water
- The Hydrophobic Effect is an Entropy-based Phenomenon
- van der Waals Interactions and Other Weak Interactions Are Key to Macromolecular Structure and Function
2.2 Ionization of Water, Weak Acids, and Weak Bases
- The Ionization of Water Is Expressed by an Equilibrium Constant
- The pH Scale Designates H+ and OH- Concentrations
- Weak Acids and Bases Have Characteristic Acid Dissociation Constants
- Titration Curves Reveal the pKa of Weak Acids
2.3 Buffering against pH Changes in Biological Systems
- A Buffer System Resists Changes in pH in Response to Added Acid or Base.
- The Henderson-Hasselbalch Equation Relates pH, pKa, and Buffer Concentration
- Weak Acids or Bases Buffer Cells and Tissues against pH Changes
- Phosphate and Bicarbonate Are Important Biological Buffer Systems Untreated Diabetes Produces Life-Threatening Acidosis
Chapter 3: Amino Acids, Peptides, and Proteins
3.1 Amino Acids
- What is an Amino Acid?
- The Amino Acid Residues in Proteins Are L Stereoisomers
- Amino Acids Can Be Classified by R Group
- Some Amino Acids Absorb Ultraviolet Light
- Uncommon Amino Acids Also Have Important Functions
- Amino Acids Can Act as Acids and Bases
- Amino Acids Differ in Their Acid-Base Properties
3.2 Peptides and Proteins
- Peptides Are Chains of Amino Acids
- Disulfide Bonds Occur in Some Proteins
- Ionization Behavior Can Distinguish Peptides
- Some Proteins Contain Chemical Groups Other Than Amino Acids
3.3 Purifying Proteins
- Proteins Can Be Separated and Purified
- Proteins Are Detected and Quantified Based on Their Functions
- Proteins Can Be Separated and Characterized by Electrophoresis
3.4 The Primary Structure of Proteins and Protein Chemistry
- There are Levels of Complexity to Protein Structure
- The Function of a Protein Depends on Its Amino Acid Sequence
- There are Multiple Ways to Reduce a Polypeptide Chain into Fragments.
- Mass Spectrometry Provides Information on Molecular Mass, Amino Acid Sequence, and Entire Proteomes
- Amino Acid Sequences Provide Important Biochemical and Evolutionary Information
Chapter 4: Protein Structure
4.1 Forces and Interactions that Stabilize Protein Structures
- Protein Structures Are Largely Stabilized by Weak Interactions
- Hydrogen Bonding, Ion Pairs, and van der Waals Interactions Also Contribute to Protein Folding
- The Conformation of the Peptide Bond Constrains Polypeptide Conformation
4.2 Secondary Protein Structure
- The ¿ Helix Maximizes the Use of Polypeptide Hydrogen Bonds
- The ß Strand is a Common Secondary Structure with an Extended Conformation
- Ramachandran Plots Describe the Distribution of Secondary Structure in a Protein
4.3 Tertiary and Quaternary Protein Structure
- Fibrous Proteins Have a Single Type of Secondary Structure
- The Fibrous Protein Collagen is the Most Abundant Protein in Mammals
- Silk is Made from a Fibrous Protein with b-sheet Secondary Structure
- Globular Proteins are Compact and Highly Varied in Three Dimensional Structure
- Protein Tertiary Structures can be Described in Terms of Motifs and Domains.
- Intrinsically Disordered Proteins Lack Stable Tertiary Structures.
- Quaternary Structure Describes the Organization of Multisubunit Proteins.
- Biomolecular Structures Can be Determined Using a Variety of Methods
- The Protein Data Bank is a Repository for Biomolecular Structures
4.4 Protein Denaturation and Folding
- Loss of Protein Structure Results in Loss of Function
- Amino Acid Sequence Determines Tertiary Structure
- Protein Folding Occurs by Defined Pathways and can be Assisted by Chaperones.
- Defects in Protein Folding Cause Human Disease
Chapter 5: Protein Function and Ligand Binding
5.1 Reversible Protein-Ligand Binding
- Ligands Bind to Proteins Reversibly at Binding Sites
- Protein-Ligand Interactions Can Be Described Quantitatively
5.2 Reversible Binding of a Protein to a Ligand: Oxygen-Binding by Myoglobin
- Oxygen Can Bind to a Heme Prosthetic Group
- Globins Are a Family of Oxygen-Binding Proteins
- The Binding of Oxygen to Myoglobin can be Described Quantitatively
- Protein Structure Affects How Ligands Bind
5.3 Reversible and Cooperative Binding of a Protein to a Ligand: Oxygen-Binding by Hemoglobin
- Hemoglobin Subunits Are Structurally Similar to Myoglobin
- Hemoglobin Undergoes a Structural Change on Binding Oxygen
- Hemoglobin Binds Oxygen Cooperatively
- Cooperative Ligand Binding Can Be Described Quantitatively
- Hemoglobin Also Transports H+ and CO2
5.4 Medical Conditions Related to Hemoglobin
- CO Binding to Hemoglobin Poses a Serious Health Risk
- Altered Hemoglobin Subunit Interactions in Sickle Cell Anemia Cause Pain and Suffering
Chapter 6: Protein Function and Enzymes
6.1 What are Enzymes?
- Most Enzymes Are Proteins
- Enzyme-catalyzed Reactions Occur Within Active Sites
- Enzymes Affect Reaction Rates, Not Equilibria
- Reaction Rates and Equilibria are Described by Constants
6.2 How Enzymes Work
- Noncovalent Interactions between Enzyme and Substrate Are Optimized in the Transition State
- Enzymes Use a Variety of Additional Chemical Mechanisms to Facilitate Catalysis
- Coenzymes Facilitate Particular Types of Reactions
6.3 Enzyme Kinetics
- The Steady State of an Enzyme-catalyzed Reaction Reflects the Concentration of ES
- The Relationship Between Substrate Concentration and Reaction Rate can be Described Quantitatively
- Scientists Compare Enzymes Using Vmax and Km.
- Enzymes are Subject to Reversible and Irreversible Inhibition
6.4 Chymotrypsin and Enzymatic Catalysis
- The Chymotrypsin Mechanism Involves Acylation and Deacylation of an Active Site Ser Residue
- An Understanding of Protease Mechanisms Led to Treatments for HIV
- An Understanding of Enzyme Mechanism Leads to Useful Antibiotics
6.5 Regulatory Enzymes
- Some Enzymes are Regulated by Allosteric Conformational Changes in Response to Modulator Binding
- Some Enzymes are Regulated by Reversible Covalent Modification
- Some Enzymes are Regulated by Proteolytic Cleavage of an Enzyme Precursor
Chapter 7: Carbohydrates
7.1 Monosaccharides and Disaccharides
- The Two Families of Monosaccharides Are Aldoses and Ketoses
- The Common Monosaccharides Have Cyclic Structures
- Sugars Containing and Forming Aldehydes are Reducing Sugars
- Disaccharides Consist of Two Monosaccharides Joined by a Glycosidic Bond
7.2 Polysaccharides
- Some Homopolysaccharides Are Storage Forms of Fuel While Others have Structural Roles
- Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix
7.3 Glycoconjugates: Peptidoglycans, Proteoglycans, Glycoproteins, and Glycolipids
- Peptidoglycan Reinforces the Bacterial Cell Wall
- Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix
- Glycoproteins Are Proteins with Covalently Attached Oligosaccharides
- Glycolipids and Lipopolysaccharides Are Membrane Components
7.4 Carbohydrates as Signaling Molecules
- Oligosaccharides Have Highly Diverse Structures
- Lectins Are Proteins That Bind Specifically to Complex Oligosaccharides and Mediate Many Biological Processes
Chapter 8: Lipids, Membranes, and Membrane Proteins
8.1 Membrane Lipids
- Fatty Acids are the...
Erscheinungsjahr: | 2025 |
---|---|
Fachbereich: | Biophysik |
Genre: | Biologie, Importe |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781319589967 |
ISBN-10: | 1319589960 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Cox, Michael M.
Hoskins, Aaron A. Viel, Alain Simcox, Judith |
Hersteller: | Macmillan Learning |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 274 x 215 x 25 mm |
Von/Mit: | Michael M. Cox (u. a.) |
Erscheinungsdatum: | 15.04.2025 |
Gewicht: | 1,448 kg |
Chapter 1: Biochemistry Concepts and Themes
1.1 Science and the Scientific Method
- What is Science?
- What is the Scientific Method?
1.2 Organisms, Cells, Chromosomes, and Genes
- Organisms Belong to Three Distinct Domains of Life
- Cells Are the Structural and Functional Units of All Living Organisms
- Viruses Cannot Live Independently of Cells
- Bacterial Cells Feature a Relatively Simple Architecture and Streamlined Lifestyles
- Eukaryotic Cells Have a Variety of Membranous Organelles
- Cells Contain a Wide Range of Supramolecular Structures
- Major Model Organisms and Systems are Useful in Biochemistry
- The Linear Sequence in DNA Encodes Proteins with Three-Dimensional Structures
1.3 The Organic Chemistry of Biochemistry
- Major Organic Species are Found in Cells
- Macromolecules Are the Major Constituents of Cells
- Molecular Weight and Molecular Mass are Expressed by Distinct Conventions
- Nucleophiles and Electrophiles Define How Many Reactions Proceed
- Cofactors Facilitate Particular Classes of Biochemical Reactions
1.4 A Review of Basic Thermodynamics
- Equilibrium Constants and Rate Constants Describe Distinct but Related Thermodynamic Parameters
- Organisms Transform Energy and Matter from Their Surroundings
- Creating and Maintaining Order Requires Work and Energy
1.5 Using Data Banks
Chapter 2: Water: The Chemistry of Life
2.1 Weak Interactions in Aqueous Systems
- Hydrogen Bonds Give Water Its Unusual Properties
- Water Interacts Electrostatically with Charged Solutes
- Nonpolar Gases Are Poorly Soluble in Water
- The Hydrophobic Effect is an Entropy-based Phenomenon
- van der Waals Interactions and Other Weak Interactions Are Key to Macromolecular Structure and Function
2.2 Ionization of Water, Weak Acids, and Weak Bases
- The Ionization of Water Is Expressed by an Equilibrium Constant
- The pH Scale Designates H+ and OH- Concentrations
- Weak Acids and Bases Have Characteristic Acid Dissociation Constants
- Titration Curves Reveal the pKa of Weak Acids
2.3 Buffering against pH Changes in Biological Systems
- A Buffer System Resists Changes in pH in Response to Added Acid or Base.
- The Henderson-Hasselbalch Equation Relates pH, pKa, and Buffer Concentration
- Weak Acids or Bases Buffer Cells and Tissues against pH Changes
- Phosphate and Bicarbonate Are Important Biological Buffer Systems Untreated Diabetes Produces Life-Threatening Acidosis
Chapter 3: Amino Acids, Peptides, and Proteins
3.1 Amino Acids
- What is an Amino Acid?
- The Amino Acid Residues in Proteins Are L Stereoisomers
- Amino Acids Can Be Classified by R Group
- Some Amino Acids Absorb Ultraviolet Light
- Uncommon Amino Acids Also Have Important Functions
- Amino Acids Can Act as Acids and Bases
- Amino Acids Differ in Their Acid-Base Properties
3.2 Peptides and Proteins
- Peptides Are Chains of Amino Acids
- Disulfide Bonds Occur in Some Proteins
- Ionization Behavior Can Distinguish Peptides
- Some Proteins Contain Chemical Groups Other Than Amino Acids
3.3 Purifying Proteins
- Proteins Can Be Separated and Purified
- Proteins Are Detected and Quantified Based on Their Functions
- Proteins Can Be Separated and Characterized by Electrophoresis
3.4 The Primary Structure of Proteins and Protein Chemistry
- There are Levels of Complexity to Protein Structure
- The Function of a Protein Depends on Its Amino Acid Sequence
- There are Multiple Ways to Reduce a Polypeptide Chain into Fragments.
- Mass Spectrometry Provides Information on Molecular Mass, Amino Acid Sequence, and Entire Proteomes
- Amino Acid Sequences Provide Important Biochemical and Evolutionary Information
Chapter 4: Protein Structure
4.1 Forces and Interactions that Stabilize Protein Structures
- Protein Structures Are Largely Stabilized by Weak Interactions
- Hydrogen Bonding, Ion Pairs, and van der Waals Interactions Also Contribute to Protein Folding
- The Conformation of the Peptide Bond Constrains Polypeptide Conformation
4.2 Secondary Protein Structure
- The ¿ Helix Maximizes the Use of Polypeptide Hydrogen Bonds
- The ß Strand is a Common Secondary Structure with an Extended Conformation
- Ramachandran Plots Describe the Distribution of Secondary Structure in a Protein
4.3 Tertiary and Quaternary Protein Structure
- Fibrous Proteins Have a Single Type of Secondary Structure
- The Fibrous Protein Collagen is the Most Abundant Protein in Mammals
- Silk is Made from a Fibrous Protein with b-sheet Secondary Structure
- Globular Proteins are Compact and Highly Varied in Three Dimensional Structure
- Protein Tertiary Structures can be Described in Terms of Motifs and Domains.
- Intrinsically Disordered Proteins Lack Stable Tertiary Structures.
- Quaternary Structure Describes the Organization of Multisubunit Proteins.
- Biomolecular Structures Can be Determined Using a Variety of Methods
- The Protein Data Bank is a Repository for Biomolecular Structures
4.4 Protein Denaturation and Folding
- Loss of Protein Structure Results in Loss of Function
- Amino Acid Sequence Determines Tertiary Structure
- Protein Folding Occurs by Defined Pathways and can be Assisted by Chaperones.
- Defects in Protein Folding Cause Human Disease
Chapter 5: Protein Function and Ligand Binding
5.1 Reversible Protein-Ligand Binding
- Ligands Bind to Proteins Reversibly at Binding Sites
- Protein-Ligand Interactions Can Be Described Quantitatively
5.2 Reversible Binding of a Protein to a Ligand: Oxygen-Binding by Myoglobin
- Oxygen Can Bind to a Heme Prosthetic Group
- Globins Are a Family of Oxygen-Binding Proteins
- The Binding of Oxygen to Myoglobin can be Described Quantitatively
- Protein Structure Affects How Ligands Bind
5.3 Reversible and Cooperative Binding of a Protein to a Ligand: Oxygen-Binding by Hemoglobin
- Hemoglobin Subunits Are Structurally Similar to Myoglobin
- Hemoglobin Undergoes a Structural Change on Binding Oxygen
- Hemoglobin Binds Oxygen Cooperatively
- Cooperative Ligand Binding Can Be Described Quantitatively
- Hemoglobin Also Transports H+ and CO2
5.4 Medical Conditions Related to Hemoglobin
- CO Binding to Hemoglobin Poses a Serious Health Risk
- Altered Hemoglobin Subunit Interactions in Sickle Cell Anemia Cause Pain and Suffering
Chapter 6: Protein Function and Enzymes
6.1 What are Enzymes?
- Most Enzymes Are Proteins
- Enzyme-catalyzed Reactions Occur Within Active Sites
- Enzymes Affect Reaction Rates, Not Equilibria
- Reaction Rates and Equilibria are Described by Constants
6.2 How Enzymes Work
- Noncovalent Interactions between Enzyme and Substrate Are Optimized in the Transition State
- Enzymes Use a Variety of Additional Chemical Mechanisms to Facilitate Catalysis
- Coenzymes Facilitate Particular Types of Reactions
6.3 Enzyme Kinetics
- The Steady State of an Enzyme-catalyzed Reaction Reflects the Concentration of ES
- The Relationship Between Substrate Concentration and Reaction Rate can be Described Quantitatively
- Scientists Compare Enzymes Using Vmax and Km.
- Enzymes are Subject to Reversible and Irreversible Inhibition
6.4 Chymotrypsin and Enzymatic Catalysis
- The Chymotrypsin Mechanism Involves Acylation and Deacylation of an Active Site Ser Residue
- An Understanding of Protease Mechanisms Led to Treatments for HIV
- An Understanding of Enzyme Mechanism Leads to Useful Antibiotics
6.5 Regulatory Enzymes
- Some Enzymes are Regulated by Allosteric Conformational Changes in Response to Modulator Binding
- Some Enzymes are Regulated by Reversible Covalent Modification
- Some Enzymes are Regulated by Proteolytic Cleavage of an Enzyme Precursor
Chapter 7: Carbohydrates
7.1 Monosaccharides and Disaccharides
- The Two Families of Monosaccharides Are Aldoses and Ketoses
- The Common Monosaccharides Have Cyclic Structures
- Sugars Containing and Forming Aldehydes are Reducing Sugars
- Disaccharides Consist of Two Monosaccharides Joined by a Glycosidic Bond
7.2 Polysaccharides
- Some Homopolysaccharides Are Storage Forms of Fuel While Others have Structural Roles
- Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix
7.3 Glycoconjugates: Peptidoglycans, Proteoglycans, Glycoproteins, and Glycolipids
- Peptidoglycan Reinforces the Bacterial Cell Wall
- Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix
- Glycoproteins Are Proteins with Covalently Attached Oligosaccharides
- Glycolipids and Lipopolysaccharides Are Membrane Components
7.4 Carbohydrates as Signaling Molecules
- Oligosaccharides Have Highly Diverse Structures
- Lectins Are Proteins That Bind Specifically to Complex Oligosaccharides and Mediate Many Biological Processes
Chapter 8: Lipids, Membranes, and Membrane Proteins
8.1 Membrane Lipids
- Fatty Acids are the...
Erscheinungsjahr: | 2025 |
---|---|
Fachbereich: | Biophysik |
Genre: | Biologie, Importe |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781319589967 |
ISBN-10: | 1319589960 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Cox, Michael M.
Hoskins, Aaron A. Viel, Alain Simcox, Judith |
Hersteller: | Macmillan Learning |
Verantwortliche Person für die EU: | Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 274 x 215 x 25 mm |
Von/Mit: | Michael M. Cox (u. a.) |
Erscheinungsdatum: | 15.04.2025 |
Gewicht: | 1,448 kg |