Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Mastering Retrieval-Augmented Generation
Building next-gen GenAI apps with LangChain, LlamaIndex, and LLMs (English Edition)
Taschenbuch von Prashanth Josyula (u. a.)
Sprache: Englisch

53,30 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Large language models (LLMs) like GPT, BERT, and T5 are revolutionizing how we interact with technology - powering virtual assistants, content generation, and data analysis. As their influence grows, understanding their architecture, capabilities, and ethical considerations is more important than ever. This book breaks down the essentials of LLMs and explores retrieval-augmented generation (RAG), a powerful approach that combines retrieval systems with generative AI for smarter, faster, and more reliable results.
It provides a step-by-step approach to building advanced intelligent systems that utilize an innovative technique known as the RAG thus making them factually correct, context-aware, and sustainable. You will start with foundational knowledge - understanding architectures, training processes, and ethical considerations - before diving into the mechanics of RAG, learning how retrievers and generators collaborate to improve performance. The book introduces essential frameworks like LangChain and LlamaIndex, walking you through practical implementations, troubleshooting, and optimization techniques. It explores advanced optimization techniques, and offers hands-on coding exercises to ensure practical understanding. Real-world case studies and industry applications help bridge the gap between theory and implementation.
By the final chapter, you will have the skills to design, build, and optimize RAG-powered applications - integrating LLMs with retrieval systems, creating custom pipelines, and scaling for performance.

WHAT YOU WILL LEARN
¿ Understand the fundamentals of LLMs.
¿ Explore RAG and its key components.
¿ Build GenAI applications using LangChain and LlamaIndex frameworks.
¿ Optimize retrieval strategies for accurate and grounded AI responses.
¿ Deploy scalable, production-ready RAG pipelines with best practices.
¿ Troubleshoot and fine-tune RAG pipelines for optimal performance.

WHO THIS BOOK IS FOR
This book is for AI practitioners, data scientists, students, and developers looking to implement RAG using LangChain and LlamaIndex. Readers having basic knowledge of Python, ML concepts, and NLP fundamentals would be able to leverage the knowledge gained to accelerate their careers.
Large language models (LLMs) like GPT, BERT, and T5 are revolutionizing how we interact with technology - powering virtual assistants, content generation, and data analysis. As their influence grows, understanding their architecture, capabilities, and ethical considerations is more important than ever. This book breaks down the essentials of LLMs and explores retrieval-augmented generation (RAG), a powerful approach that combines retrieval systems with generative AI for smarter, faster, and more reliable results.
It provides a step-by-step approach to building advanced intelligent systems that utilize an innovative technique known as the RAG thus making them factually correct, context-aware, and sustainable. You will start with foundational knowledge - understanding architectures, training processes, and ethical considerations - before diving into the mechanics of RAG, learning how retrievers and generators collaborate to improve performance. The book introduces essential frameworks like LangChain and LlamaIndex, walking you through practical implementations, troubleshooting, and optimization techniques. It explores advanced optimization techniques, and offers hands-on coding exercises to ensure practical understanding. Real-world case studies and industry applications help bridge the gap between theory and implementation.
By the final chapter, you will have the skills to design, build, and optimize RAG-powered applications - integrating LLMs with retrieval systems, creating custom pipelines, and scaling for performance.

WHAT YOU WILL LEARN
¿ Understand the fundamentals of LLMs.
¿ Explore RAG and its key components.
¿ Build GenAI applications using LangChain and LlamaIndex frameworks.
¿ Optimize retrieval strategies for accurate and grounded AI responses.
¿ Deploy scalable, production-ready RAG pipelines with best practices.
¿ Troubleshoot and fine-tune RAG pipelines for optimal performance.

WHO THIS BOOK IS FOR
This book is for AI practitioners, data scientists, students, and developers looking to implement RAG using LangChain and LlamaIndex. Readers having basic knowledge of Python, ML concepts, and NLP fundamentals would be able to leverage the knowledge gained to accelerate their careers.
Details
Erscheinungsjahr: 2025
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9789365897241
ISBN-10: 9365897246
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Josyula, Prashanth
Singh, Karanbir
Hersteller: BPB Publications
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 191 x 21 mm
Von/Mit: Prashanth Josyula (u. a.)
Erscheinungsdatum: 21.03.2025
Gewicht: 0,737 kg
Artikel-ID: 131834977
Details
Erscheinungsjahr: 2025
Fachbereich: Programmiersprachen
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9789365897241
ISBN-10: 9365897246
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Josyula, Prashanth
Singh, Karanbir
Hersteller: BPB Publications
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 191 x 21 mm
Von/Mit: Prashanth Josyula (u. a.)
Erscheinungsdatum: 21.03.2025
Gewicht: 0,737 kg
Artikel-ID: 131834977
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte