Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Mathematik-Vorkurs
Übungs- und Arbeitsbuch für Studienanfänger
Taschenbuch von Kurt Georgi (u. a.)
Sprache: Deutsch

49,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Das vorliegende Übungs- und Arbeitsbuch dient der Vorbereitung auf die Mathe­ matik-Grundausbildung an Hochschulen im weitesten Sinne. Dabei stehen natur-, ingenieur-und wirtschaftswissenschaftliche Studiengänge im Mittelpunkt. Es wendet sich sowohl an jene Leser, die sich frühzeitig entschlossen haben, ein mathematikintensives Studium zu beginnen, als auch an alle, die schon studieren und nun merken, was ihnen an Mathematikkenntnissen noch fehlt, und die das Fehlende möglichst schnell nachholen wollen. Das Buch beinhaltet alle wesentlichen Stoff gebiete, die auch in den Mathematikprü­ fungen zum Abitur und zu anderen Formen der Hochschulreife von Bedeutung sind. Da es in Deutschland kein "Einheitsabitur" gibt, sind die Kenntnisse, Fähigkeiten und Fertigkeiten im Fach Mathematik sogar bei Studienanfängern formal gleicher Bil­ dungswege extrem unterschiedlich und nicht selten zu gering. Die Mathematikausbil­ dung orientiert sich dann meist an einem "mittleren" Studenten. Die Folge sind außerordentliche Schwierigkeiten bei einem beträchtlichen Teil der Studienanfänger, und das nicht nur im Fach Mathematik, sondern auch in anderen Grundlagenfächem. Oft ist das Scheitern eines Hochschulstudiums auf diese Anfangsschwierigkeiten zu­ rückzufiihren, während gute Mathematik-Vorkenntnisse fiir den Erfolg des Studiums und sogar fiir den beruflichen Erfolg entscheidend sein können. Die Autoren kennen diese Probleme von beiden Seiten: aus der Sicht der Mathematik­ Grundausbildung an Hochschulen und aus der Sicht der Vorbereitung auf das Hoch­ schulstudium. Dabei haben sie auch jahrelang mit verschiedenen von ihnen entwickel­ ten Lehrmaterialien Erfahrungen sammeln können.
Das vorliegende Übungs- und Arbeitsbuch dient der Vorbereitung auf die Mathe­ matik-Grundausbildung an Hochschulen im weitesten Sinne. Dabei stehen natur-, ingenieur-und wirtschaftswissenschaftliche Studiengänge im Mittelpunkt. Es wendet sich sowohl an jene Leser, die sich frühzeitig entschlossen haben, ein mathematikintensives Studium zu beginnen, als auch an alle, die schon studieren und nun merken, was ihnen an Mathematikkenntnissen noch fehlt, und die das Fehlende möglichst schnell nachholen wollen. Das Buch beinhaltet alle wesentlichen Stoff gebiete, die auch in den Mathematikprü­ fungen zum Abitur und zu anderen Formen der Hochschulreife von Bedeutung sind. Da es in Deutschland kein "Einheitsabitur" gibt, sind die Kenntnisse, Fähigkeiten und Fertigkeiten im Fach Mathematik sogar bei Studienanfängern formal gleicher Bil­ dungswege extrem unterschiedlich und nicht selten zu gering. Die Mathematikausbil­ dung orientiert sich dann meist an einem "mittleren" Studenten. Die Folge sind außerordentliche Schwierigkeiten bei einem beträchtlichen Teil der Studienanfänger, und das nicht nur im Fach Mathematik, sondern auch in anderen Grundlagenfächem. Oft ist das Scheitern eines Hochschulstudiums auf diese Anfangsschwierigkeiten zu­ rückzufiihren, während gute Mathematik-Vorkenntnisse fiir den Erfolg des Studiums und sogar fiir den beruflichen Erfolg entscheidend sein können. Die Autoren kennen diese Probleme von beiden Seiten: aus der Sicht der Mathematik­ Grundausbildung an Hochschulen und aus der Sicht der Vorbereitung auf das Hoch­ schulstudium. Dabei haben sie auch jahrelang mit verschiedenen von ihnen entwickel­ ten Lehrmaterialien Erfahrungen sammeln können.
Inhaltsverzeichnis
1 Elementare Rechenoperationen mit reellen Zahlen.- 1.1 Aufbau des Zahlensystems.- 1.2 Abgeleitete Rechenregeln.- 1.3 Übungsaufgaben.- 2 Potenzen und Wurzeln.- 2.1 Potenzen mit ganzzahligen Exponenten.- 2.2 Wurzeln und Potenzen mit rationalen Exponenten.- 2.3 Potenzen mit reellen Exponenten.- 2.4 Zusammenfassung.- 2.5 Übungsaufgaben.- 3 Logarithmen.- 3.1 Begriff des Logarithmus.- 3.2 Logarithmengesetze.- 3.3 Zusammenfassung.- 3.4 Übungsaufgaben.- 4 Goniometrie.- 4.1 Elementargeometrie.- 4.2 Die Seitenverhältnisse am rechtwinkligen Dreieck.- 4.3 Die Winkelfunktionen am Einheitskreis.- 4.4 Sinus- und Kosinussatz.- 4.5 Trigonometrische Formeln.- 4.6 Übungsaufgaben.- 5 Komplexe Zahlen.- 5.1 Summe und Differenz.- 5.2 Produkt.- 5.3 Quotient.- 5.4 Übungsaufgaben.- 6 Lineare Gleichungen mit einer Unbekannten.- 6.1 Übungsaufgaben.- 7 Einige Grundbegriffe der mathematischen Logik.- 7.1 Aussage, Wahrheitswert, Aussageform.- 7.2 Verknüpfung von Aussagen (Aussagenfunktionen).- 7.3 Beziehungen zwischen den Aussagenfunktionen.- 7.4 Existenz- und Universalaussagen.- 7.5 Notwendige und hinreichende Bedingung.- 7.6 Übungsaufgaben.- 8 Beweismethoden.- 8.1 Der direkte Beweis.- 8.2 Der indirekte Beweis.- 8.3 Beweis durch vollständige Induktion.- 8.4 Übungsaufgaben.- 9 Grundbegriffe der Mengenlehre.- 9.1 Der Begriff der Menge.- 9.2 Relationen zwischen Mengen.- 9.3 Operationen mit Mengen.- 9.4 Abbildungen.- 9.5 Übungsaufgaben.- 10 Kombinatorik - Binomischer Satz.- 10.1 Die Fakultät.- 10.2 Binomialkoeffizienten.- 10.3 Der binomische Satz.- 10.4 Kombinatorik.- 10.5 Übungsaufgaben.- 11 Lineare Algebra.- 11.1 Lineare Gleichungssysteme mit zwei Unbekannten.- 11.2 Lineare Gleichungssysteme mit drei Unbekannten.- 11.3 Beliebig viele Gleichungen mit beliebig vielen Unbekannten.- 11.4Homogene Gleichungssysteme.- 11.5 Übungsaufgaben.- 12 Algebraische Gleichungen.- 12.1 Nichtlineare Gleichungen.- 12.2 Quadratische Gleichungen.- 12.3 Gleichungen dritten Grades.- 12.4 Wurzelgleichungen.- 12.5 Übungsaufgaben.- 13 Transzendente Gleichungen.- 13.1 Logarithmische Gleichungen.- 13.2 Exponentialgleichungen.- 13.3 Goniometrische Gleichungen.- 13.4 Übungsaufgaben.- 14 Rechnen mit Ungleichungen und Beträgen.- 14.1 Ungleichungen.- 14.2 Gleichungen und Ungleichungen mit Beträgen.- 14.3 Übungsaufgaben.- 15 Elementare Funktionen.- 15.1 Zum Funktionsbegriff.- 15.2 Darstellung von Funktionen.- 15.3 Zu einigen elementaren Funktionen.- 15.4 Eigenschaften von Funktionen.- 15.5 Mittelbare Funktionen.- 15.6 Umkehrfunktionen.- 15.7 Übungsaufgaben.- 16 Analytische Geometrie der Ebene.- 16.1 Allgemeines.- 16.2 Länge und Anstieg einer Strecke.- 16.3 Verschiedene Formen der Gleichung einer Geraden.- 16.4 Schnittpunkt und Schnittwinkel zweier Geraden.- 16.5 Parallelverschiebung des Koordinatensystems.- 16.6 Der Flächeninhalt eines Dreiecks.- 16.7 Der Kreis.- 16.8 Die Ellipse.- 16.9 Die Hyperbel.- 16.10 Die Parabel.- 16.11 Übungsaufgaben.- 17 Vektorrechnung.- 17.1 Grundbegriffe.- 17.2 Vektoren im kartesischen Koordinatensystem.- 17.3 Gerade und Ebene im Raum.- 17.4 Produkte von Vektoren.- 17.5 Übungsaufgaben.- 18 Zahlenfolgen.- 18.1 Einführung.- 18.2 Begriff der Zahlenfolge.- 18.3 Grenzwerte von Zahlenfolgen.- 18.4 Berechnung von Grenzwerten.- 18.5 Übungsaufgaben.- 19 Grenzwerte und Stetigkeit von Funktionen.- 19.1 Grundlegende Begriffe.- 19.2 Sätze über Grenzwerte und Stetigkeit.- 19.3 Eigenschaften stetiger Funktionen.- 19.4 Die Stetigkeit der elementaren Funktionen.- 19.5 Übungsaufgaben.- 20 Differentialrechnung.- 20.1 Differentialquotienten und Ableitung.-20.2 Differentiationsregeln.- 20.3 Die Ableitung der elementaren Funktion.- 20.4 Extremwerte und Wendepunkte.- 20.5 Optimierungsprobleme.- 20.6 Übungsaufgaben.- 21 Integralrechnung.- 21.1 Das unbestimmte Integral.- 21.2 Das bestimmte Integral.- 21.3 Zwei Integrationsverfahren.- 21.4 Anwendungen der Integralrechnung.- 21.5 Übungsaufgaben.- Lösungen ausgewählter Übungsaufgaben.
Details
Erscheinungsjahr: 1994
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: 472 S.
160 s/w Illustr.
472 S. 160 Abb.
ISBN-13: 9783815420782
ISBN-10: 3815420784
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Georgi, Kurt
Schäfer, Wolfgang
Auflage: 2. Auflage 1993
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 235 x 155 x 26 mm
Von/Mit: Kurt Georgi (u. a.)
Erscheinungsdatum: 01.03.1994
Gewicht: 0,715 kg
Artikel-ID: 112188774
Inhaltsverzeichnis
1 Elementare Rechenoperationen mit reellen Zahlen.- 1.1 Aufbau des Zahlensystems.- 1.2 Abgeleitete Rechenregeln.- 1.3 Übungsaufgaben.- 2 Potenzen und Wurzeln.- 2.1 Potenzen mit ganzzahligen Exponenten.- 2.2 Wurzeln und Potenzen mit rationalen Exponenten.- 2.3 Potenzen mit reellen Exponenten.- 2.4 Zusammenfassung.- 2.5 Übungsaufgaben.- 3 Logarithmen.- 3.1 Begriff des Logarithmus.- 3.2 Logarithmengesetze.- 3.3 Zusammenfassung.- 3.4 Übungsaufgaben.- 4 Goniometrie.- 4.1 Elementargeometrie.- 4.2 Die Seitenverhältnisse am rechtwinkligen Dreieck.- 4.3 Die Winkelfunktionen am Einheitskreis.- 4.4 Sinus- und Kosinussatz.- 4.5 Trigonometrische Formeln.- 4.6 Übungsaufgaben.- 5 Komplexe Zahlen.- 5.1 Summe und Differenz.- 5.2 Produkt.- 5.3 Quotient.- 5.4 Übungsaufgaben.- 6 Lineare Gleichungen mit einer Unbekannten.- 6.1 Übungsaufgaben.- 7 Einige Grundbegriffe der mathematischen Logik.- 7.1 Aussage, Wahrheitswert, Aussageform.- 7.2 Verknüpfung von Aussagen (Aussagenfunktionen).- 7.3 Beziehungen zwischen den Aussagenfunktionen.- 7.4 Existenz- und Universalaussagen.- 7.5 Notwendige und hinreichende Bedingung.- 7.6 Übungsaufgaben.- 8 Beweismethoden.- 8.1 Der direkte Beweis.- 8.2 Der indirekte Beweis.- 8.3 Beweis durch vollständige Induktion.- 8.4 Übungsaufgaben.- 9 Grundbegriffe der Mengenlehre.- 9.1 Der Begriff der Menge.- 9.2 Relationen zwischen Mengen.- 9.3 Operationen mit Mengen.- 9.4 Abbildungen.- 9.5 Übungsaufgaben.- 10 Kombinatorik - Binomischer Satz.- 10.1 Die Fakultät.- 10.2 Binomialkoeffizienten.- 10.3 Der binomische Satz.- 10.4 Kombinatorik.- 10.5 Übungsaufgaben.- 11 Lineare Algebra.- 11.1 Lineare Gleichungssysteme mit zwei Unbekannten.- 11.2 Lineare Gleichungssysteme mit drei Unbekannten.- 11.3 Beliebig viele Gleichungen mit beliebig vielen Unbekannten.- 11.4Homogene Gleichungssysteme.- 11.5 Übungsaufgaben.- 12 Algebraische Gleichungen.- 12.1 Nichtlineare Gleichungen.- 12.2 Quadratische Gleichungen.- 12.3 Gleichungen dritten Grades.- 12.4 Wurzelgleichungen.- 12.5 Übungsaufgaben.- 13 Transzendente Gleichungen.- 13.1 Logarithmische Gleichungen.- 13.2 Exponentialgleichungen.- 13.3 Goniometrische Gleichungen.- 13.4 Übungsaufgaben.- 14 Rechnen mit Ungleichungen und Beträgen.- 14.1 Ungleichungen.- 14.2 Gleichungen und Ungleichungen mit Beträgen.- 14.3 Übungsaufgaben.- 15 Elementare Funktionen.- 15.1 Zum Funktionsbegriff.- 15.2 Darstellung von Funktionen.- 15.3 Zu einigen elementaren Funktionen.- 15.4 Eigenschaften von Funktionen.- 15.5 Mittelbare Funktionen.- 15.6 Umkehrfunktionen.- 15.7 Übungsaufgaben.- 16 Analytische Geometrie der Ebene.- 16.1 Allgemeines.- 16.2 Länge und Anstieg einer Strecke.- 16.3 Verschiedene Formen der Gleichung einer Geraden.- 16.4 Schnittpunkt und Schnittwinkel zweier Geraden.- 16.5 Parallelverschiebung des Koordinatensystems.- 16.6 Der Flächeninhalt eines Dreiecks.- 16.7 Der Kreis.- 16.8 Die Ellipse.- 16.9 Die Hyperbel.- 16.10 Die Parabel.- 16.11 Übungsaufgaben.- 17 Vektorrechnung.- 17.1 Grundbegriffe.- 17.2 Vektoren im kartesischen Koordinatensystem.- 17.3 Gerade und Ebene im Raum.- 17.4 Produkte von Vektoren.- 17.5 Übungsaufgaben.- 18 Zahlenfolgen.- 18.1 Einführung.- 18.2 Begriff der Zahlenfolge.- 18.3 Grenzwerte von Zahlenfolgen.- 18.4 Berechnung von Grenzwerten.- 18.5 Übungsaufgaben.- 19 Grenzwerte und Stetigkeit von Funktionen.- 19.1 Grundlegende Begriffe.- 19.2 Sätze über Grenzwerte und Stetigkeit.- 19.3 Eigenschaften stetiger Funktionen.- 19.4 Die Stetigkeit der elementaren Funktionen.- 19.5 Übungsaufgaben.- 20 Differentialrechnung.- 20.1 Differentialquotienten und Ableitung.-20.2 Differentiationsregeln.- 20.3 Die Ableitung der elementaren Funktion.- 20.4 Extremwerte und Wendepunkte.- 20.5 Optimierungsprobleme.- 20.6 Übungsaufgaben.- 21 Integralrechnung.- 21.1 Das unbestimmte Integral.- 21.2 Das bestimmte Integral.- 21.3 Zwei Integrationsverfahren.- 21.4 Anwendungen der Integralrechnung.- 21.5 Übungsaufgaben.- Lösungen ausgewählter Übungsaufgaben.
Details
Erscheinungsjahr: 1994
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Thema: Lexika
Medium: Taschenbuch
Inhalt: 472 S.
160 s/w Illustr.
472 S. 160 Abb.
ISBN-13: 9783815420782
ISBN-10: 3815420784
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Georgi, Kurt
Schäfer, Wolfgang
Auflage: 2. Auflage 1993
Hersteller: Vieweg & Teubner
Vieweg+Teubner Verlag
Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, D-65189 Wiesbaden, juergen.hartmann@springer.com
Maße: 235 x 155 x 26 mm
Von/Mit: Kurt Georgi (u. a.)
Erscheinungsdatum: 01.03.1994
Gewicht: 0,715 kg
Artikel-ID: 112188774
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte