Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Positioning and Location-Based Analytics in 5g and Beyond
Buch von Stefania Bartoletti (u. a.)
Sprache: Englisch

124,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung

Understand the future of cellular positioning with this introduction

The fifth generation (5G) of mobile network technology are revolutionizing numerous aspects of cellular communication. Location information promises to make possible a range of new location-dependent services for end users and providers alike. With the new possibilities of this location technology comes a new demand for location-based analytics, a new paradigm for generating and analyzing dynamic location data for a wide variety of purposes.

Positioning and Location-based Analytics in 5G and Beyond introduces the foundational concepts related to network localization, user positioning, and location-based analytics in the context of cutting-edge mobile networks. It includes information on current location-based technologies and their application, and guidance on the future development of location systems beyond 5G. The result is an accessible but rigorous guide to a bold new frontier in cellular technology.

Positioning and Location-based Analytics in 5G and Beyond readers will also find:

  • Contributions from leading researchers and industry professionals
  • High-level insights into 5G and its future evolution
  • In-depth coverage of subjects such as positioning enablers, location-aware network management, reference standard architectures, and more

Positioning and Location-based Analytics in 5G and Beyond is ideal for researchers and industry professionals with an understanding of network communications and a desire to understand the future of the field.

Understand the future of cellular positioning with this introduction

The fifth generation (5G) of mobile network technology are revolutionizing numerous aspects of cellular communication. Location information promises to make possible a range of new location-dependent services for end users and providers alike. With the new possibilities of this location technology comes a new demand for location-based analytics, a new paradigm for generating and analyzing dynamic location data for a wide variety of purposes.

Positioning and Location-based Analytics in 5G and Beyond introduces the foundational concepts related to network localization, user positioning, and location-based analytics in the context of cutting-edge mobile networks. It includes information on current location-based technologies and their application, and guidance on the future development of location systems beyond 5G. The result is an accessible but rigorous guide to a bold new frontier in cellular technology.

Positioning and Location-based Analytics in 5G and Beyond readers will also find:

  • Contributions from leading researchers and industry professionals
  • High-level insights into 5G and its future evolution
  • In-depth coverage of subjects such as positioning enablers, location-aware network management, reference standard architectures, and more

Positioning and Location-based Analytics in 5G and Beyond is ideal for researchers and industry professionals with an understanding of network communications and a desire to understand the future of the field.

Über den Autor

Stefania Bartoletti, PhD, is an Assistant Professor with the University of Rome Tor Vergata, Italy, and member of the National Inter-University Consortium for Telecommunications (CNIT). She has received research funding from the European Commission as a Marie-Sk¿odowska Curie Global Fellow and as coordinator of the project LOCUS.

Nicola Blefari Melazzi, PhD, is a Professor with the University of Rome Tor Vergata, Italy, President of the National Inter-University Consortium for Telecommunications (CNIT) and President of the RESTART Foundation. He has received research funding from Italian Ministries, world-leading telecommunications companies, and the European Commission as coordinator of seven European projects. He has been appointed by the Italian Ministry of Research as the Italian representative to the European Smart Networks and Services Joint Undertaking.

Inhaltsverzeichnis

About the Editors xii

List of Contributors xiii

Preface xiv

Acknowledgments xx

List of Abbreviations xxi

1 Introduction and Fundamentals 1
Stefania Bartoletti, Eduardo Baena, Raquel Barco, Giacomo Bernini, Nicola Blefari Melazzi, Hui Chen, Sergio Fortes, Domenico Giustiniano, Mythri Hunukumbure, Fan Jiang, Emil J. Khatib, Oluwatayo Kolawole, Aristotelis Margaris, Sara Modarres Razavi, Athina Ropodi, Gürkan Solmaz, Kostas Tsagkaris, and Henk Wymeersch

1.1 Introduction and Motivation 1

1.2 Use Cases, Verticals, and Applications 2

1.2.1 Emergency Calls 2

1.2.2 Public Safety and Natural Disasters 3

1.2.3 ITS and Autonomous Vehicles 4

1.2.4 IIoT, Construction Sites, and Mines 4

1.2.5 Commercial and Transport Hubs 5

1.2.6 Internet-of-Things 5

1.2.7 Education and Gaming 6

1.3 Fundamentals of Positioning and Navigation 7

1.3.1 Position-Dependent Measurements 7

1.3.2 Positioning Methods 8

1.3.3 AI/ML for Positioning 9

1.4 Fundamentals of Location-Based Analytics 10

1.5 Introduction to Architectural Principles 12

1.5.1 5G Architecture and Positioning 13

1.5.2 Location-Based Analytics Platform 13

1.6 Book Outline 16

Part I Positioning Enablers 19

2 Positioning Methods 21
Stefania Bartoletti, Carlos S. Álvarez-Merino, Raquel Barco, Hui Chen, Andrea Conti, Yannis Filippas, Domenico Giustiniano, Carlos A. Gómez Vega, Mythri Hunukumbure, Fan Jiang, Emil J. Khatib, Oluwatayo Y. Kolawole, Flavio Morselli, Sara Modarres Razavi, Athina Ropodi, Joerg Widmer, Moe Z. Win, and Henk Wymeersch

2.1 Positioning as Parameter Estimation 22

2.1.1 The Snapshot Positioning Problem 22

2.1.2 Fisher Information and Bounds 24

2.1.3 Tracking and Location-Data Fusion 25

2.1.3.1 Practical Aspects 27

2.2 Device-Based Radio Positioning 28

2.2.1 Theoretical Foundations 28

2.2.1.1 Signal Model 28

2.2.1.2 Equivalent Fisher Information Matrix 29

2.2.1.3 Interpretation 30

2.2.2 Signal Processing Techniques 30

2.2.3 Example Results of 5G-Based Positioning in IIoT Scenarios 31

2.3 Device-Free Radio Localization 33

2.3.1 Theoretical Foundations 34

2.3.1.1 Signal Model 34

2.3.1.2 EFIM for DFL 35

2.3.1.3 Interpretation 36

2.3.2 Signal Processing Techniques 37

2.3.3 Experimental Results on 5G-Based DFL 38

2.4 AI/ML for Positioning 40

2.4.1 Fingerprinting Approach 41

2.4.2 Soft Information-Based Approach 44

2.4.3 AI/ML to Mitigate Practical Impairments 46

3 Standardization in 5G and 5G Advanced Positioning 51
Sara Modarres Razavi, Mythri Hunukumbure, and Domenico Giustiniano

3.1 Positioning Standardization Support Prior to 5G 51

3.1.1 GNSS and Real-Time Kinematics (RTK) GNSS Positioning 52

3.1.2 WiFi/Bluetooth-Based Positioning 55

3.1.3 Terrestrial Beacon System 56

3.1.4 Sensor Positioning 56

3.1.5 RAT-Dependent Positioning Prior to 5G 56

3.1.5.1 Enhanced CID (eCID) 57

3.1.5.2 Observed Time-Difference-of-Arrival (OTDoA) 58

3.1.5.3 Uplink Time-Difference-of-Arrival (UTDoA) 58

3.1.6 Internet of Things (IoT) Positioning 58

3.1.7 Other Non-3GPP Technologies 58

3.1.7.1 UWB 58

3.1.7.2 Fingerprinting 59

3.2 5G Positioning 59

3.2.1 5G Localization Architecture 60

3.2.2 Positioning Protocols 62

3.2.3 RAT-Dependent NR Positioning Technologies 64

3.2.3.1 Downlink-Based Solutions 64

3.2.3.2 Uplink-Based Solutions 64

3.2.3.3 Downlink- and Uplink-Based Solutions 64

3.2.4 Specific Positioning Signals 65

3.2.4.1 Downlink Positioning Reference Signal 66

3.2.4.2 Uplink Signal for Positioning 67

3.2.5 Positioning Measurements 68

3.3 Hybrid Positioning Technologies 69

3.3.1 Outdoor Fusion 69

3.3.2 Indoor Fusion 70

3.4 5G Advanced Positioning 71

4 Enablers Toward 6G Positioning and Sensing 75
Joerg Widmer, Henk Wymeersch, Stefania Bartoletti, Hui Chen, Andrea Conti, Nicolò Decarli, Fan Jiang, Barbara M. Masini, Flavio Morselli, Gianluca Torsoli, and Moe Z. Win

4.1 Integrated Sensing and Communication 76

4.1.1 ISAC Application: Joint Radar and Communication with Sidelink V2X 77

4.1.1.1 V2X and Its Sensing Potential 79

4.1.1.2 V2X Target Parameter Estimation and Signal Numerology 80

4.1.1.3 V2X Resource Allocation 81

4.1.2 ISAC Application: Human Activity Recognition and Person Identification 82

4.1.2.1 Beyond Positioning 82

4.1.2.2 System Aspects 83

4.1.2.3 Processing Chain 83

4.2 Reconfigurable Intelligent Surfaces for Positioning and Sensing 85

4.2.1 RIS Enabling and Enhancing Positioning 86

4.2.1.1 RIS Enabling Positioning 87

4.2.1.2 RIS Enhancing Positioning 87

4.2.1.3 Use Cases 88

4.2.2 RIS for Sensing 88

4.3 Advanced Methods 90

4.3.1 Model-Based Methods 90

4.3.2 AI-Based Methods 92

4.3.2.1 Use Case 93

5 Security, Integrity, and Privacy Aspects 99
Stefania Bartoletti, Giuseppe Bianchi, Nicola Blefari Melazzi, Domenico Garlisi, Danilo Orlando, Ivan Palamá, and Sara Modarres Razavi

5.1 Location Privacy 100

5.1.1 Overview on the Privacy Implication 100

5.1.2 Identification and Authentication in Cellular Networks 102

5.1.3 IMSI Catching Attack 103

5.1.4 Enhanced Privacy Protection in 5G Networks 104

5.1.5 Location Privacy Algorithms 106

5.1.6 Location Privacy Considered Model 108

5.1.7 Location Privacy Tested Approach 108

5.2 Location Security 110

5.2.1 Location Security in 4G/5G Networks 112

5.2.2 Threat Models and Bounds 113

5.2.2.1 Formal Model 114

5.2.2.2 Error Model for the Spoofing Attack 115

5.2.2.3 Threat Model Example Case Study: Range-Based Localization Using RSSI 116

5.2.2.4 Error Bound Under Spoofing Attack 116

5.2.2.5 Case Study 117

5.3 3GPP Integrity Support 119

References 121

Part II Location-based Analytics and New Services 125

6 Location and Analytics for Verticals 127
Gürkan Solmaz, Raquel Barco, Stefania Bartoletti, Andrea Conti, Nicolò Decarli, Yannis Filippas, Andrea Giani, Emil J. Khatib, Oluwatayo Y. Kolawole, Tomasz Mach, Barbara M. Masini, and Athina Ropodi

6.1 People-Centric Analytics 127

6.1.1 Crowd Mobility Analytics 127

6.1.1.1 Introduction and RelatedWork 127

6.1.1.2 Example Experimental Results from Crowd Mobility Analytics: Group Inference 133

6.1.2 Flow Monitoring 135

6.1.2.1 Introduction and RelatedWork 135

6.1.2.2 Selected DL Approaches and Results for Trajectory Prediction 136

6.1.3 COVID--19 Contact Tracing 139

6.1.3.1 Introduction and RelatedWork 139

6.1.3.2 Selected Approach and Example Results from Contact Tracing 141

6.2 Localization in Road Safety Applications 142

6.2.1 Safety-Critical Use Cases and 5G Position-Related Requirements 143

6.2.1.1 Introduction and RelatedWork 143

6.2.1.2 Example Results for Safety-Critical Use Cases 144

6.2.2 Upper Layers Architecture in ETSI ITS Standard 145

6.2.2.1 Introduction and RelatedWork 145

6.2.2.2 Example Results for ITS 148

6.2.3 5G Automotive Association (5GAA) Activities 151

7 Location-Aware Network Management 157
Sergio Fortes, Eduardo Baena, Raquel Barco, Isabel de la Bandera, Zwi Altman, Luca Chiaraviglio, Wassim B. Chikha, Sana B. Jemaa, Yannis Filippas, Imed Hadj-Kacem, Aristotelis Margaris, Marie Masson, and Kostas Tsagkaris

7.1 Introduction 157

7.2 Location-Aware Cellular Network Planning 161

7.2.1 What Is the Cellular Network Planning? 161

7.2.2 Why Is Localization Important in the Planning Phase? 162

7.2.3 Location-Aware Cellular Network Planning 164

7.2.4 Future Directions 164

7.3 Location-Aware Network Optimization 165

7.3.1 What Is the Cellular Network Optimization? 165

7.3.2 Why Is Location Information Important in Optimization? 166

7.3.3 Hybrid Clustering-Based Optimization of 5G Mobile Networks 167

7.3.3.1 Clustering Methods and Algorithmic Approach 167

7.3.3.2 Results and Conclusions 168

7.3.4 Location-Aware Capacity and Coverage Optimization 170

7.3.4.1 Dual-Connectivity Optimization 170

7.3.4.2 Results and Conclusions 171

7.3.5 SINR Prediction in Presence of Correlated Shadowing in Cellular Networks 172

7.3.5.1 SINR Prediction with Kriging 173

7.3.5.2 Results and Conclusions 175

7.3.5.3 Multi-user (MU) Scheduling Enhancement with Geolocation Information and Radio Environment Maps (REMs) 177

7.3.5.4 Results and Conclusions 178

7.3.6 Social-Aware Load Balancing System for Crowds in Cellular Networks 179

7.3.6.1 Social-Aware Fuzzy Logic Controller (FLC) Power Traffic Sharing (PTS) Control 179

7.3.6.2 Results and Conclusions 180

7.3.7 Future Directions 182

7.4 Location-Aware Network Failure Management 182

7.4.1 What Is the Cellular Network Failure Management? 182

7.4.2 Why Is Localization Important in Failure Management? 183

7.4.3 Contextualized Indicators 184

7.4.3.1 Contextualized Indicators 184

7.4.3.2 Results and Conclusions 186

7.4.4 Location-Based Deep Learning Techniques for Network Analysis 189

7.4.4.1 Synthetic mages and Deep-Learning Classification 189

7.4.4.2 Results and Conclusions 190

Part III Architectural Aspects for Localization and Analytics 197

...
Details
Erscheinungsjahr: 2023
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781119911432
ISBN-10: 1119911435
Sprache: Englisch
Einband: Gebunden
Redaktion: Bartoletti, Stefania
Blefari Melazzi, Nicola
Hersteller: Wiley
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 157 x 20 mm
Von/Mit: Stefania Bartoletti (u. a.)
Erscheinungsdatum: 24.10.2023
Gewicht: 0,576 kg
Artikel-ID: 131360715
Über den Autor

Stefania Bartoletti, PhD, is an Assistant Professor with the University of Rome Tor Vergata, Italy, and member of the National Inter-University Consortium for Telecommunications (CNIT). She has received research funding from the European Commission as a Marie-Sk¿odowska Curie Global Fellow and as coordinator of the project LOCUS.

Nicola Blefari Melazzi, PhD, is a Professor with the University of Rome Tor Vergata, Italy, President of the National Inter-University Consortium for Telecommunications (CNIT) and President of the RESTART Foundation. He has received research funding from Italian Ministries, world-leading telecommunications companies, and the European Commission as coordinator of seven European projects. He has been appointed by the Italian Ministry of Research as the Italian representative to the European Smart Networks and Services Joint Undertaking.

Inhaltsverzeichnis

About the Editors xii

List of Contributors xiii

Preface xiv

Acknowledgments xx

List of Abbreviations xxi

1 Introduction and Fundamentals 1
Stefania Bartoletti, Eduardo Baena, Raquel Barco, Giacomo Bernini, Nicola Blefari Melazzi, Hui Chen, Sergio Fortes, Domenico Giustiniano, Mythri Hunukumbure, Fan Jiang, Emil J. Khatib, Oluwatayo Kolawole, Aristotelis Margaris, Sara Modarres Razavi, Athina Ropodi, Gürkan Solmaz, Kostas Tsagkaris, and Henk Wymeersch

1.1 Introduction and Motivation 1

1.2 Use Cases, Verticals, and Applications 2

1.2.1 Emergency Calls 2

1.2.2 Public Safety and Natural Disasters 3

1.2.3 ITS and Autonomous Vehicles 4

1.2.4 IIoT, Construction Sites, and Mines 4

1.2.5 Commercial and Transport Hubs 5

1.2.6 Internet-of-Things 5

1.2.7 Education and Gaming 6

1.3 Fundamentals of Positioning and Navigation 7

1.3.1 Position-Dependent Measurements 7

1.3.2 Positioning Methods 8

1.3.3 AI/ML for Positioning 9

1.4 Fundamentals of Location-Based Analytics 10

1.5 Introduction to Architectural Principles 12

1.5.1 5G Architecture and Positioning 13

1.5.2 Location-Based Analytics Platform 13

1.6 Book Outline 16

Part I Positioning Enablers 19

2 Positioning Methods 21
Stefania Bartoletti, Carlos S. Álvarez-Merino, Raquel Barco, Hui Chen, Andrea Conti, Yannis Filippas, Domenico Giustiniano, Carlos A. Gómez Vega, Mythri Hunukumbure, Fan Jiang, Emil J. Khatib, Oluwatayo Y. Kolawole, Flavio Morselli, Sara Modarres Razavi, Athina Ropodi, Joerg Widmer, Moe Z. Win, and Henk Wymeersch

2.1 Positioning as Parameter Estimation 22

2.1.1 The Snapshot Positioning Problem 22

2.1.2 Fisher Information and Bounds 24

2.1.3 Tracking and Location-Data Fusion 25

2.1.3.1 Practical Aspects 27

2.2 Device-Based Radio Positioning 28

2.2.1 Theoretical Foundations 28

2.2.1.1 Signal Model 28

2.2.1.2 Equivalent Fisher Information Matrix 29

2.2.1.3 Interpretation 30

2.2.2 Signal Processing Techniques 30

2.2.3 Example Results of 5G-Based Positioning in IIoT Scenarios 31

2.3 Device-Free Radio Localization 33

2.3.1 Theoretical Foundations 34

2.3.1.1 Signal Model 34

2.3.1.2 EFIM for DFL 35

2.3.1.3 Interpretation 36

2.3.2 Signal Processing Techniques 37

2.3.3 Experimental Results on 5G-Based DFL 38

2.4 AI/ML for Positioning 40

2.4.1 Fingerprinting Approach 41

2.4.2 Soft Information-Based Approach 44

2.4.3 AI/ML to Mitigate Practical Impairments 46

3 Standardization in 5G and 5G Advanced Positioning 51
Sara Modarres Razavi, Mythri Hunukumbure, and Domenico Giustiniano

3.1 Positioning Standardization Support Prior to 5G 51

3.1.1 GNSS and Real-Time Kinematics (RTK) GNSS Positioning 52

3.1.2 WiFi/Bluetooth-Based Positioning 55

3.1.3 Terrestrial Beacon System 56

3.1.4 Sensor Positioning 56

3.1.5 RAT-Dependent Positioning Prior to 5G 56

3.1.5.1 Enhanced CID (eCID) 57

3.1.5.2 Observed Time-Difference-of-Arrival (OTDoA) 58

3.1.5.3 Uplink Time-Difference-of-Arrival (UTDoA) 58

3.1.6 Internet of Things (IoT) Positioning 58

3.1.7 Other Non-3GPP Technologies 58

3.1.7.1 UWB 58

3.1.7.2 Fingerprinting 59

3.2 5G Positioning 59

3.2.1 5G Localization Architecture 60

3.2.2 Positioning Protocols 62

3.2.3 RAT-Dependent NR Positioning Technologies 64

3.2.3.1 Downlink-Based Solutions 64

3.2.3.2 Uplink-Based Solutions 64

3.2.3.3 Downlink- and Uplink-Based Solutions 64

3.2.4 Specific Positioning Signals 65

3.2.4.1 Downlink Positioning Reference Signal 66

3.2.4.2 Uplink Signal for Positioning 67

3.2.5 Positioning Measurements 68

3.3 Hybrid Positioning Technologies 69

3.3.1 Outdoor Fusion 69

3.3.2 Indoor Fusion 70

3.4 5G Advanced Positioning 71

4 Enablers Toward 6G Positioning and Sensing 75
Joerg Widmer, Henk Wymeersch, Stefania Bartoletti, Hui Chen, Andrea Conti, Nicolò Decarli, Fan Jiang, Barbara M. Masini, Flavio Morselli, Gianluca Torsoli, and Moe Z. Win

4.1 Integrated Sensing and Communication 76

4.1.1 ISAC Application: Joint Radar and Communication with Sidelink V2X 77

4.1.1.1 V2X and Its Sensing Potential 79

4.1.1.2 V2X Target Parameter Estimation and Signal Numerology 80

4.1.1.3 V2X Resource Allocation 81

4.1.2 ISAC Application: Human Activity Recognition and Person Identification 82

4.1.2.1 Beyond Positioning 82

4.1.2.2 System Aspects 83

4.1.2.3 Processing Chain 83

4.2 Reconfigurable Intelligent Surfaces for Positioning and Sensing 85

4.2.1 RIS Enabling and Enhancing Positioning 86

4.2.1.1 RIS Enabling Positioning 87

4.2.1.2 RIS Enhancing Positioning 87

4.2.1.3 Use Cases 88

4.2.2 RIS for Sensing 88

4.3 Advanced Methods 90

4.3.1 Model-Based Methods 90

4.3.2 AI-Based Methods 92

4.3.2.1 Use Case 93

5 Security, Integrity, and Privacy Aspects 99
Stefania Bartoletti, Giuseppe Bianchi, Nicola Blefari Melazzi, Domenico Garlisi, Danilo Orlando, Ivan Palamá, and Sara Modarres Razavi

5.1 Location Privacy 100

5.1.1 Overview on the Privacy Implication 100

5.1.2 Identification and Authentication in Cellular Networks 102

5.1.3 IMSI Catching Attack 103

5.1.4 Enhanced Privacy Protection in 5G Networks 104

5.1.5 Location Privacy Algorithms 106

5.1.6 Location Privacy Considered Model 108

5.1.7 Location Privacy Tested Approach 108

5.2 Location Security 110

5.2.1 Location Security in 4G/5G Networks 112

5.2.2 Threat Models and Bounds 113

5.2.2.1 Formal Model 114

5.2.2.2 Error Model for the Spoofing Attack 115

5.2.2.3 Threat Model Example Case Study: Range-Based Localization Using RSSI 116

5.2.2.4 Error Bound Under Spoofing Attack 116

5.2.2.5 Case Study 117

5.3 3GPP Integrity Support 119

References 121

Part II Location-based Analytics and New Services 125

6 Location and Analytics for Verticals 127
Gürkan Solmaz, Raquel Barco, Stefania Bartoletti, Andrea Conti, Nicolò Decarli, Yannis Filippas, Andrea Giani, Emil J. Khatib, Oluwatayo Y. Kolawole, Tomasz Mach, Barbara M. Masini, and Athina Ropodi

6.1 People-Centric Analytics 127

6.1.1 Crowd Mobility Analytics 127

6.1.1.1 Introduction and RelatedWork 127

6.1.1.2 Example Experimental Results from Crowd Mobility Analytics: Group Inference 133

6.1.2 Flow Monitoring 135

6.1.2.1 Introduction and RelatedWork 135

6.1.2.2 Selected DL Approaches and Results for Trajectory Prediction 136

6.1.3 COVID--19 Contact Tracing 139

6.1.3.1 Introduction and RelatedWork 139

6.1.3.2 Selected Approach and Example Results from Contact Tracing 141

6.2 Localization in Road Safety Applications 142

6.2.1 Safety-Critical Use Cases and 5G Position-Related Requirements 143

6.2.1.1 Introduction and RelatedWork 143

6.2.1.2 Example Results for Safety-Critical Use Cases 144

6.2.2 Upper Layers Architecture in ETSI ITS Standard 145

6.2.2.1 Introduction and RelatedWork 145

6.2.2.2 Example Results for ITS 148

6.2.3 5G Automotive Association (5GAA) Activities 151

7 Location-Aware Network Management 157
Sergio Fortes, Eduardo Baena, Raquel Barco, Isabel de la Bandera, Zwi Altman, Luca Chiaraviglio, Wassim B. Chikha, Sana B. Jemaa, Yannis Filippas, Imed Hadj-Kacem, Aristotelis Margaris, Marie Masson, and Kostas Tsagkaris

7.1 Introduction 157

7.2 Location-Aware Cellular Network Planning 161

7.2.1 What Is the Cellular Network Planning? 161

7.2.2 Why Is Localization Important in the Planning Phase? 162

7.2.3 Location-Aware Cellular Network Planning 164

7.2.4 Future Directions 164

7.3 Location-Aware Network Optimization 165

7.3.1 What Is the Cellular Network Optimization? 165

7.3.2 Why Is Location Information Important in Optimization? 166

7.3.3 Hybrid Clustering-Based Optimization of 5G Mobile Networks 167

7.3.3.1 Clustering Methods and Algorithmic Approach 167

7.3.3.2 Results and Conclusions 168

7.3.4 Location-Aware Capacity and Coverage Optimization 170

7.3.4.1 Dual-Connectivity Optimization 170

7.3.4.2 Results and Conclusions 171

7.3.5 SINR Prediction in Presence of Correlated Shadowing in Cellular Networks 172

7.3.5.1 SINR Prediction with Kriging 173

7.3.5.2 Results and Conclusions 175

7.3.5.3 Multi-user (MU) Scheduling Enhancement with Geolocation Information and Radio Environment Maps (REMs) 177

7.3.5.4 Results and Conclusions 178

7.3.6 Social-Aware Load Balancing System for Crowds in Cellular Networks 179

7.3.6.1 Social-Aware Fuzzy Logic Controller (FLC) Power Traffic Sharing (PTS) Control 179

7.3.6.2 Results and Conclusions 180

7.3.7 Future Directions 182

7.4 Location-Aware Network Failure Management 182

7.4.1 What Is the Cellular Network Failure Management? 182

7.4.2 Why Is Localization Important in Failure Management? 183

7.4.3 Contextualized Indicators 184

7.4.3.1 Contextualized Indicators 184

7.4.3.2 Results and Conclusions 186

7.4.4 Location-Based Deep Learning Techniques for Network Analysis 189

7.4.4.1 Synthetic mages and Deep-Learning Classification 189

7.4.4.2 Results and Conclusions 190

Part III Architectural Aspects for Localization and Analytics 197

...
Details
Erscheinungsjahr: 2023
Fachbereich: Nachrichtentechnik
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9781119911432
ISBN-10: 1119911435
Sprache: Englisch
Einband: Gebunden
Redaktion: Bartoletti, Stefania
Blefari Melazzi, Nicola
Hersteller: Wiley
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 157 x 20 mm
Von/Mit: Stefania Bartoletti (u. a.)
Erscheinungsdatum: 24.10.2023
Gewicht: 0,576 kg
Artikel-ID: 131360715
Sicherheitshinweis