Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Shallow Learning vs. Deep Learning
A Practical Guide for Machine Learning Solutions
Buch von Ömer Faruk Ertu¿rul (u. a.)
Sprache: Englisch

126,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
This book explores the ongoing debate between shallow and deep learning in the field of machine learning. It provides a comprehensive survey of machine learning methods, from shallow learning to deep learning, and examines their applications across various domains. Shallow Learning vs Deep Learning: A Practical Guide for Machine Learning Solutions emphasizes that the choice of a machine learning approach should be informed by the specific characteristics of the dataset, the operational environment, and the unique requirements of each application, rather than being influenced by prevailing trends.

In each chapter, the book delves into different application areas, such as engineering, real-world scenarios, social applications, image processing, biomedical applications, anomaly detection, natural language processing, speech recognition, recommendation systems, autonomous systems, and smart grid applications. By comparing and contrasting the effectiveness of shallow and deep learning in these areas, the book provides a framework for thoughtful selection and application of machine learning strategies. This guide is designed for researchers, practitioners, and students who seek to deepen their understanding of when and how to apply different machine learning techniques effectively. Through comparative studies and detailed analyses, readers will gain valuable insights to make informed decisions in their respective fields.
This book explores the ongoing debate between shallow and deep learning in the field of machine learning. It provides a comprehensive survey of machine learning methods, from shallow learning to deep learning, and examines their applications across various domains. Shallow Learning vs Deep Learning: A Practical Guide for Machine Learning Solutions emphasizes that the choice of a machine learning approach should be informed by the specific characteristics of the dataset, the operational environment, and the unique requirements of each application, rather than being influenced by prevailing trends.

In each chapter, the book delves into different application areas, such as engineering, real-world scenarios, social applications, image processing, biomedical applications, anomaly detection, natural language processing, speech recognition, recommendation systems, autonomous systems, and smart grid applications. By comparing and contrasting the effectiveness of shallow and deep learning in these areas, the book provides a framework for thoughtful selection and application of machine learning strategies. This guide is designed for researchers, practitioners, and students who seek to deepen their understanding of when and how to apply different machine learning techniques effectively. Through comparative studies and detailed analyses, readers will gain valuable insights to make informed decisions in their respective fields.
Inhaltsverzeichnis

Survey of machine learning methods from shallow learning to deep learning.- Shallow learning vs Deep learning in engineering applications.- Shallow learning vs Deep learning in real-world applications.- Shallow learning vs Deep learning in social applications.- Shallow learning vs Deep learning in image processing applications.- Shallow learning vs Deep learning in biomedical applications.- Shallow learning vs Deep learning in anomaly detection applications.- Shallow learning vs Deep learning in natural language processing applications.- Shallow learning vs Deep learning in speech recognition applications.- Shallow learning vs Deep learning in recommendation systems.- Shallow learning vs Deep learning in autonomous systems.- Shallow Learning vs Deep Learning in Smart Grid Applications.

Details
Erscheinungsjahr: 2024
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xii
274 S.
10 s/w Illustr.
104 farbige Illustr.
274 p. 114 illus.
104 illus. in color.
ISBN-13: 9783031694981
ISBN-10: 3031694988
Sprache: Englisch
Einband: Gebunden
Redaktion: Ertu¿rul, Ömer Faruk
Yilmaz, Musa
Guerrero, Josep M
Herausgeber: Ömer Faruk Ertugrul/Josep M Guerrero/Musa Yilmaz
Hersteller: Springer Nature Switzerland
Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 22 mm
Von/Mit: Ömer Faruk Ertu¿rul (u. a.)
Erscheinungsdatum: 13.10.2024
Gewicht: 0,598 kg
Artikel-ID: 129766532
Inhaltsverzeichnis

Survey of machine learning methods from shallow learning to deep learning.- Shallow learning vs Deep learning in engineering applications.- Shallow learning vs Deep learning in real-world applications.- Shallow learning vs Deep learning in social applications.- Shallow learning vs Deep learning in image processing applications.- Shallow learning vs Deep learning in biomedical applications.- Shallow learning vs Deep learning in anomaly detection applications.- Shallow learning vs Deep learning in natural language processing applications.- Shallow learning vs Deep learning in speech recognition applications.- Shallow learning vs Deep learning in recommendation systems.- Shallow learning vs Deep learning in autonomous systems.- Shallow Learning vs Deep Learning in Smart Grid Applications.

Details
Erscheinungsjahr: 2024
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: xii
274 S.
10 s/w Illustr.
104 farbige Illustr.
274 p. 114 illus.
104 illus. in color.
ISBN-13: 9783031694981
ISBN-10: 3031694988
Sprache: Englisch
Einband: Gebunden
Redaktion: Ertu¿rul, Ömer Faruk
Yilmaz, Musa
Guerrero, Josep M
Herausgeber: Ömer Faruk Ertugrul/Josep M Guerrero/Musa Yilmaz
Hersteller: Springer Nature Switzerland
Springer International Publishing
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 22 mm
Von/Mit: Ömer Faruk Ertu¿rul (u. a.)
Erscheinungsdatum: 13.10.2024
Gewicht: 0,598 kg
Artikel-ID: 129766532
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte