Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
113,95 €
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
PART I: GATHERING AND EXPLORING DATA
- Statistics: The Art and Science of Learning from Data
- Using Data to Answer Statistical Questions
- Sample Versus Population
- Organizing Data, Statistical Software, and the New Field of Data Science
- Chapter Summary
- Chapter Exercises
- Exploring Data with Graphs and Numerical Summaries
- Different Types of Data
- Graphical Summaries of Data
- Measuring the Center of Quantitative Data
- Measuring the Variability of Quantitative Data
- Using Measures of Position to Describe Variability
- Linear Transformations and Standardizing
- Recognizing and Avoiding Misuses of Graphical Summaries
- Chapter Summary
- Chapter Exercises
- Exploring Relationships Between Two Variables
- The Association Between Two Categorical Variables
- The Relationship Between Two Quantitative Variables
- Linear Regression: Predicting the Outcome of a Variable
- Cautions in Analyzing Associations
- Chapter Summary
- Chapter Exercises
- Gathering Data
- Experimental and Observational Studies
- Good and Poor Ways to Sample
- Good and Poor Ways to Experiment
- Other Ways to Conduct Experimental and Nonexperimental Studies
- Chapter Summary
- Chapter Exercises
- How Probability Quantifies Randomness
- Finding Probabilities
- Conditional Probability
- Applying the Probability Rules
- Chapter Summary
- Chapter Exercises
- Summarizing Possible Outcomes and Their Probabilities
- Probabilities for Bell-Shaped Distributions
- Probabilities When Each Observation Has Two Possible Outcomes
- Chapter Summary
- Chapter Exercises
- How Sample Proportions Vary Around the Population Proportion
- How Sample Means Vary Around the Population Mean
- Using the Bootstrap to Find Sampling Distributions
- Chapter Summary
- Chapter Exercises
- Point and Interval Estimates of Population Parameters
- Confidence Interval for a Population Proportion
- Confidence Interval for a Population Mean
- Bootstrap Confidence Intervals
- Chapter Summary
- Chapter Exercises
- Steps for Performing a Significance Test
- Significance Tests About Proportions
- Significance Tests About a Mean
- Decisions and Types of Errors in Significance Tests
- Limitations of Significance Tests
- The Likelihood of a Type II Error
- Chapter Summary
- Chapter Exercises
- Categorical Response: Comparing Two Proportions
- Quantitative Response: Comparing Two Means
- Comparing Two Groups with Bootstrap or Permutation Resampling
- Analyzing Dependent Samples
- Adjusting for the Effects of Other Variables
- Chapter Summary
- Chapter Exercises
- Independence and Dependence (Association)
- Testing Categorical Variables for Independence
- Determining the Strength of the Association
- Using Residuals to Reveal the Pattern of Association
- Fisher's Exact and Permutation Tests
- Chapter Summary
- Chapter Exercises
- Modeling How Two Variables Are Related
- Inference About Model Parameters and the Association
- Describing the Strength of Association
- How the Data Vary Around the Regression Line
- Exponential Regression: A Model for Nonlinearity
- Chapter Summary
- Chapter Exercises
- Using Several Variables to Predict a Response
- Extending the Correlation and R2 for Multiple Regression
- Using Multiple Regression to Make Inferences
- Checking a Regression Model Using Residual Plots
- Regression and Categorical Predictors
- Modeling a Categorical Response
- Chapter Summary
- Chapter Exercises
- One-Way ANOVA: Comparing Several Means
- Estimating Differences in Groups for a Single Factor
- Two-Way ANOVA
- Chapter Summary
- Chapter Exercises
- Compare Two Groups by Ranking
- Nonparametric Methods for Several Groups and for Matched Pairs
- Chapter Summary
- Chapter Exercises
- Appendix
- Answers
- Index
- Index of Applications
- Credits
PART I: GATHERING AND EXPLORING DATA
- Statistics: The Art and Science of Learning from Data
- Using Data to Answer Statistical Questions
- Sample Versus Population
- Organizing Data, Statistical Software, and the New Field of Data Science
- Chapter Summary
- Chapter Exercises
- Exploring Data with Graphs and Numerical Summaries
- Different Types of Data
- Graphical Summaries of Data
- Measuring the Center of Quantitative Data
- Measuring the Variability of Quantitative Data
- Using Measures of Position to Describe Variability
- Linear Transformations and Standardizing
- Recognizing and Avoiding Misuses of Graphical Summaries
- Chapter Summary
- Chapter Exercises
- Exploring Relationships Between Two Variables
- The Association Between Two Categorical Variables
- The Relationship Between Two Quantitative Variables
- Linear Regression: Predicting the Outcome of a Variable
- Cautions in Analyzing Associations
- Chapter Summary
- Chapter Exercises
- Gathering Data
- Experimental and Observational Studies
- Good and Poor Ways to Sample
- Good and Poor Ways to Experiment
- Other Ways to Conduct Experimental and Nonexperimental Studies
- Chapter Summary
- Chapter Exercises
- How Probability Quantifies Randomness
- Finding Probabilities
- Conditional Probability
- Applying the Probability Rules
- Chapter Summary
- Chapter Exercises
- Summarizing Possible Outcomes and Their Probabilities
- Probabilities for Bell-Shaped Distributions
- Probabilities When Each Observation Has Two Possible Outcomes
- Chapter Summary
- Chapter Exercises
- How Sample Proportions Vary Around the Population Proportion
- How Sample Means Vary Around the Population Mean
- Using the Bootstrap to Find Sampling Distributions
- Chapter Summary
- Chapter Exercises
- Point and Interval Estimates of Population Parameters
- Confidence Interval for a Population Proportion
- Confidence Interval for a Population Mean
- Bootstrap Confidence Intervals
- Chapter Summary
- Chapter Exercises
- Steps for Performing a Significance Test
- Significance Tests About Proportions
- Significance Tests About a Mean
- Decisions and Types of Errors in Significance Tests
- Limitations of Significance Tests
- The Likelihood of a Type II Error
- Chapter Summary
- Chapter Exercises
- Categorical Response: Comparing Two Proportions
- Quantitative Response: Comparing Two Means
- Comparing Two Groups with Bootstrap or Permutation Resampling
- Analyzing Dependent Samples
- Adjusting for the Effects of Other Variables
- Chapter Summary
- Chapter Exercises
- Independence and Dependence (Association)
- Testing Categorical Variables for Independence
- Determining the Strength of the Association
- Using Residuals to Reveal the Pattern of Association
- Fisher's Exact and Permutation Tests
- Chapter Summary
- Chapter Exercises
- Modeling How Two Variables Are Related
- Inference About Model Parameters and the Association
- Describing the Strength of Association
- How the Data Vary Around the Regression Line
- Exponential Regression: A Model for Nonlinearity
- Chapter Summary
- Chapter Exercises
- Using Several Variables to Predict a Response
- Extending the Correlation and R2 for Multiple Regression
- Using Multiple Regression to Make Inferences
- Checking a Regression Model Using Residual Plots
- Regression and Categorical Predictors
- Modeling a Categorical Response
- Chapter Summary
- Chapter Exercises
- One-Way ANOVA: Comparing Several Means
- Estimating Differences in Groups for a Single Factor
- Two-Way ANOVA
- Chapter Summary
- Chapter Exercises
- Compare Two Groups by Ranking
- Nonparametric Methods for Several Groups and for Matched Pairs
- Chapter Summary
- Chapter Exercises
- Appendix
- Answers
- Index
- Index of Applications
- Credits
Details
Erscheinungsjahr: | 2022 |
---|---|
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9781292444765 |
ISBN-10: | 1292444762 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Agresti, Alan
Franklin, Christine Klingenberg, Bernhard |
Auflage: | 5. Auflage |
Hersteller: | Pearson |
Verantwortliche Person für die EU: | Pearson, St.-Martin-Str. 82, D-81541 München, salesde@pearson.com |
Maße: | 274 x 212 x 31 mm |
Von/Mit: | Alan Agresti (u. a.) |
Erscheinungsdatum: | 19.08.2022 |
Gewicht: | 1,856 kg |