Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
This book is a clear exposition, with exercises, of the basic ideas of algebraic topology: homology (singular, simplicial, and cellular), homotopy groups, and cohomology rings. It is suitable for a two- semester course at the beginning graduate level, requiring as a prerequisite a knowledge of point set topology and basic algebra.
This book is a clear exposition, with exercises, of the basic ideas of algebraic topology: homology (singular, simplicial, and cellular), homotopy groups, and cohomology rings. It is suitable for a two- semester course at the beginning graduate level, requiring as a prerequisite a knowledge of point set topology and basic algebra.
Zusammenfassung
This book is a clear exposition, with exercises, of the basic ideas of algebraic topology: homology (singular, simplicial, and cellular), homotopy groups, and cohomology rings. It is suitable for a two- semester course at the beginning graduate level, requiring as a prerequisite a knowledge of point set topology and basic algebra.
Inhaltsverzeichnis
0 Introduction.- Notation.- Brouwer Fixed Point Theorem.- Categories and Functors.- [...] Basic Topological Notions.- Homotopy.- Convexity, Contractibility, and Cones.- Paths and Path Connectedness.- 2 Simplexes.- Affine Spaces.- Affine Maps.- 3 The Fundamental Group.- The Fundamental Groupoid.- The Functor ?1.- ?1(S1).- 4 Singular Homology.- Holes and Green's Theorem.- Free Abelian Groups.- The Singular Complex and Homology Functors.- Dimension Axiom and Compact Supports.- The Homotopy Axiom.- The Hurewicz Theorem.- 5 Long Exact Sequences.- The Category Comp.- Exact Homology Sequences.- Reduced Homology.- 6 Excision and Applications.- Excision and Mayer-Vietoris.- Homology of Spheres and Some Applications.- Barycentric Subdivision and the Proof of Excision.- More Applications to Euclidean Space.- 7 Simplicial Complexes.- Definitions.- Simplicial Approximation.- Abstract Simplicial Complexes.- Simplicial Homology.- Comparison with Singular Homology.- Calculations.- Fundamental Groups of Polyhedra.- The Seifert-van Kampen Theorem.- 8 CW Complexes.- Hausdorff Quotient Spaces.- Attaching Cells.- Homology and Attaching Cells.- CW Complexes.- Cellular Homology.- 9 Natural Transformations.- Definitions and Examples.- Eilenberg-Steenrod Axioms.- Chain Equivalences.- Acyclic Models.- Lefschetz Fixed Point Theorem.- Tensor Products.- Universal Coefficients.- Eilenberg-Zilber Theorem and the Künneth Formula.- 10 Covering Spaces.- Basic Properties.- Covering Transformations.- Existence.- Orbit Spaces.- 11 Homotopy Groups.- Function Spaces.- Group Objects and Cogroup Objects.- Loop Space and Suspension.- Homotopy Groups.- Exact Sequences.- Fibrations.- A Glimpse Ahead.- 12 Cohomology.- Differential Forms.- Cohomology Groups.- Universal Coefficients Theorems for Cohomology.-Cohomology Rings.- Computations and Applications.- Notation.
Details
Erscheinungsjahr: 2011
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xiv
437 S.
ISBN-13: 9781461289302
ISBN-10: 1461289300
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Rotman, Joseph J.
Hersteller: Springer
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 25 mm
Von/Mit: Joseph J. Rotman
Erscheinungsdatum: 05.10.2011
Gewicht: 0,686 kg
Artikel-ID: 106371192

Ähnliche Produkte

Taschenbuch