Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
An Introduction to Differential Geometry with Applications to Elasticity
Buch von Philippe G. Ciarlet
Sprache: Englisch

91,40 €*

-15 % UVP 106,99 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are ¿two-dimensional¿, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental ¿Korn inequality on a surface¿ and to an ¿in?nit- imal rigid displacement lemma on a surface¿. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book ¿Mathematical Elasticity, Volume III: Theory of Shells¿, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are ¿two-dimensional¿, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental ¿Korn inequality on a surface¿ and to an ¿in?nit- imal rigid displacement lemma on a surface¿. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book ¿Mathematical Elasticity, Volume III: Theory of Shells¿, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
Zusammenfassung

Self-contained treatment

Interplay between differential geometry and elasticity theory

Inhaltsverzeichnis
Three-Dimensional Differential Geometry.- Differential Geometry of Surfaces.- Applications to Three-Dimensional Elasticity in Curvilinear Coordinates.- Applications to Shell Theory.
Details
Erscheinungsjahr: 2006
Fachbereich: Technik allgemein
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: vi
209 S.
ISBN-13: 9781402042478
ISBN-10: 1402042477
Sprache: Englisch
Herstellernummer: 11511496
Einband: Gebunden
Autor: Ciarlet, Philippe G.
Hersteller: Springer Netherland
Springer Netherlands
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 18 mm
Von/Mit: Philippe G. Ciarlet
Erscheinungsdatum: 22.02.2006
Gewicht: 0,494 kg
Artikel-ID: 101802512
Zusammenfassung

Self-contained treatment

Interplay between differential geometry and elasticity theory

Inhaltsverzeichnis
Three-Dimensional Differential Geometry.- Differential Geometry of Surfaces.- Applications to Three-Dimensional Elasticity in Curvilinear Coordinates.- Applications to Shell Theory.
Details
Erscheinungsjahr: 2006
Fachbereich: Technik allgemein
Genre: Importe, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: vi
209 S.
ISBN-13: 9781402042478
ISBN-10: 1402042477
Sprache: Englisch
Herstellernummer: 11511496
Einband: Gebunden
Autor: Ciarlet, Philippe G.
Hersteller: Springer Netherland
Springer Netherlands
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 241 x 160 x 18 mm
Von/Mit: Philippe G. Ciarlet
Erscheinungsdatum: 22.02.2006
Gewicht: 0,494 kg
Artikel-ID: 101802512
Sicherheitshinweis