Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Infinite Dimensional Kähler Manifolds
Taschenbuch von Tilmann Wurzbacher (u. a.)
Sprache: Englisch

52,95 €*

-1 % UVP 53,49 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kähler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kähler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
Inhaltsverzeichnis
to Group Actions in Symplectic and Complex Geometry.- I. Finite-dimensional manifolds.- II. Elements of Lie groups and their actions.- III. Manifolds with additional structure.- IV. Symplectic manifolds with symmetry.- V. Kählerian structures on coadjoint orbits of compact groups and associated representations.- Literature.- Infinite-dimensional Groups and their Representations.- I. Calculus in locally convex spaces.- II. Dual spaces of locally convex spaces.- III. Topologies on function spaces.- IV. Representations of infinite-dimensional groups.- V. Generalized coherent state representations.- References.- Borel-Weil Theory for Loop Groups.- I. Compact groups.- II. Loop groups and their central extensions.- III. Root decompositions.- IV. Representations of loop groups.- V. Representations of involutive semigroups.- VI. Borel-Weil theory.- VII. Consequences for general representations.- References.- Coadjoint Representation of Virasoro-type Lie Algebras and Differential Operators on Tensor-densities.- I. Coadjoint representation of Virasoro group and Sturm-Liouville operators; Schwarzian derivative as a 1-cocycle.- II. Projectively invariant version of the Gelfand-Fuchs cocycle and of the Schwarzian derivative.- III. Kirillov's method of Lie superalgebras.- IV. Invariants of coadjoint representation of the Virasoro group.- V. Extension of the Lie algebra of first order linear differential operators on S1 and matrix analogue of the Sturm-Liouville operator.- VI. Geometrical definition of the Gelfand-Dickey bracket and the relation to the Moyal-Weil star-product.- References.- From Group Actions to Determinant Bundles Using (Heat-kernel) Renormalization Techniques.- I. Renormalization techniques.- II. The first Chern form on a class of hermitian vector bundles.- [...] geometry of gauge orbits.- IV. The geometry of determinant bundles.- V. An example: the action of diffeomorphisms on complex structures.- References.- Fermionic Second Quantization and the Geometry of the Restricted Grassmannian.- I. Fermionic second quantization.- II. Bogoliubov transformations and the Schwinger term.- III. The restricted Grassmannian of a polarized Hilbert space.- IV. The non-equivariant moment map of the restricted Grassmannian.- V. The determinant line bundle on the restricted Grassmannian.- References.
Details
Erscheinungsjahr: 2001
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xiii
375 S.
ISBN-13: 9783764366025
ISBN-10: 3764366028
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Huckleberry, Alan
Wurzbacher, Tilmann
Redaktion: Wurzbacher, Tilmann
Huckleberry, Alan
Herausgeber: Alan Huckleberry/Tilmann Wurzbacher
Hersteller: Birkhäuser Basel
Springer Basel AG
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 244 x 170 x 22 mm
Von/Mit: Tilmann Wurzbacher (u. a.)
Erscheinungsdatum: 01.09.2001
Gewicht: 0,675 kg
Artikel-ID: 105734362
Inhaltsverzeichnis
to Group Actions in Symplectic and Complex Geometry.- I. Finite-dimensional manifolds.- II. Elements of Lie groups and their actions.- III. Manifolds with additional structure.- IV. Symplectic manifolds with symmetry.- V. Kählerian structures on coadjoint orbits of compact groups and associated representations.- Literature.- Infinite-dimensional Groups and their Representations.- I. Calculus in locally convex spaces.- II. Dual spaces of locally convex spaces.- III. Topologies on function spaces.- IV. Representations of infinite-dimensional groups.- V. Generalized coherent state representations.- References.- Borel-Weil Theory for Loop Groups.- I. Compact groups.- II. Loop groups and their central extensions.- III. Root decompositions.- IV. Representations of loop groups.- V. Representations of involutive semigroups.- VI. Borel-Weil theory.- VII. Consequences for general representations.- References.- Coadjoint Representation of Virasoro-type Lie Algebras and Differential Operators on Tensor-densities.- I. Coadjoint representation of Virasoro group and Sturm-Liouville operators; Schwarzian derivative as a 1-cocycle.- II. Projectively invariant version of the Gelfand-Fuchs cocycle and of the Schwarzian derivative.- III. Kirillov's method of Lie superalgebras.- IV. Invariants of coadjoint representation of the Virasoro group.- V. Extension of the Lie algebra of first order linear differential operators on S1 and matrix analogue of the Sturm-Liouville operator.- VI. Geometrical definition of the Gelfand-Dickey bracket and the relation to the Moyal-Weil star-product.- References.- From Group Actions to Determinant Bundles Using (Heat-kernel) Renormalization Techniques.- I. Renormalization techniques.- II. The first Chern form on a class of hermitian vector bundles.- [...] geometry of gauge orbits.- IV. The geometry of determinant bundles.- V. An example: the action of diffeomorphisms on complex structures.- References.- Fermionic Second Quantization and the Geometry of the Restricted Grassmannian.- I. Fermionic second quantization.- II. Bogoliubov transformations and the Schwinger term.- III. The restricted Grassmannian of a polarized Hilbert space.- IV. The non-equivariant moment map of the restricted Grassmannian.- V. The determinant line bundle on the restricted Grassmannian.- References.
Details
Erscheinungsjahr: 2001
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xiii
375 S.
ISBN-13: 9783764366025
ISBN-10: 3764366028
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Huckleberry, Alan
Wurzbacher, Tilmann
Redaktion: Wurzbacher, Tilmann
Huckleberry, Alan
Herausgeber: Alan Huckleberry/Tilmann Wurzbacher
Hersteller: Birkhäuser Basel
Springer Basel AG
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 244 x 170 x 22 mm
Von/Mit: Tilmann Wurzbacher (u. a.)
Erscheinungsdatum: 01.09.2001
Gewicht: 0,675 kg
Artikel-ID: 105734362
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte