Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Deep Learning with Keras
Implementing deep learning models and neural networks with the power of Python
Taschenbuch von Antonio Gulli (u. a.)
Sprache: Englisch

63,40 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.

Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in games
See how various deep learning models and practical use-cases can be implemented using Keras
A practical, hands-on guide with real-world examples to give you a strong foundation in Keras

Book Description:
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.

Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.

Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.

What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning

Who this book is for:
If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.

Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in games
See how various deep learning models and practical use-cases can be implemented using Keras
A practical, hands-on guide with real-world examples to give you a strong foundation in Keras

Book Description:
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.

Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.

Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.

What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning

Who this book is for:
If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
Über den Autor
Antonio Gulli is a transformational software executive and business leader with a passion for establishing and managing global technological talent for innovation and execution. He is an expert in search engines, online services, machine learning, information retrieval, analytics, and cloud computing. So far, he has been lucky enough to gain professional experience in four different countries in Europe and manage teams in six different countries in Europe and America. Currently, he works as site lead and director of cloud in Google Warsaw, driving European efforts for Serverless, Kubernetes, and Google Cloud UX. Previously, Antonio helped to innovate academic search as the vice president for Elsevier, a worldwide leading publisher. Before that, he drove query suggestions and news search as a principal engineer for Microsoft. Earlier, he served as the CTO for [...], driving multimedia and news search. Antonio has filed for 20+ patents, published multiple academic papers, and served as a senior PC member in multiple international conferences. He truly believes that to be successful, you must have a great combination of management, research skills, just-get-it-done, and selling [...] Kapoor is an associate professor in the Department of Electronics, SRCASW, University of Delhi. She has been actively teaching neural networks for the last 20 years. She did her master's in electronics in 1996 and PhD in 2011. During her PhD, she was awarded the prestigious DAAD fellowship to pursue a part of her research work in Karlsruhe Institute of Technology, Karlsruhe, Germany. She had been awarded the best presentation award at International Conference Photonics 2008 for her paper. She is a member of professional bodies such as OSA (Optical Society of America), IEEE (Institute of Electrical and Electronics Engineers), INNS (International Neural Network Society), and ISBS (Indian Society for Buddhist Studies). Amita has more than 40 publications in international journals and conferences to her credit. Her present research areas include machine learning, artificial intelligence, neural networks, robotics, Buddhism (philosophy and psychology) and ethics in AI.
Details
Erscheinungsjahr: 2017
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781787128422
ISBN-10: 1787128423
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Gulli, Antonio
Pal, Sujit
Hersteller: Packt Publishing
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 191 x 18 mm
Von/Mit: Antonio Gulli (u. a.)
Erscheinungsdatum: 28.04.2017
Gewicht: 0,597 kg
Artikel-ID: 109028320
Über den Autor
Antonio Gulli is a transformational software executive and business leader with a passion for establishing and managing global technological talent for innovation and execution. He is an expert in search engines, online services, machine learning, information retrieval, analytics, and cloud computing. So far, he has been lucky enough to gain professional experience in four different countries in Europe and manage teams in six different countries in Europe and America. Currently, he works as site lead and director of cloud in Google Warsaw, driving European efforts for Serverless, Kubernetes, and Google Cloud UX. Previously, Antonio helped to innovate academic search as the vice president for Elsevier, a worldwide leading publisher. Before that, he drove query suggestions and news search as a principal engineer for Microsoft. Earlier, he served as the CTO for [...], driving multimedia and news search. Antonio has filed for 20+ patents, published multiple academic papers, and served as a senior PC member in multiple international conferences. He truly believes that to be successful, you must have a great combination of management, research skills, just-get-it-done, and selling [...] Kapoor is an associate professor in the Department of Electronics, SRCASW, University of Delhi. She has been actively teaching neural networks for the last 20 years. She did her master's in electronics in 1996 and PhD in 2011. During her PhD, she was awarded the prestigious DAAD fellowship to pursue a part of her research work in Karlsruhe Institute of Technology, Karlsruhe, Germany. She had been awarded the best presentation award at International Conference Photonics 2008 for her paper. She is a member of professional bodies such as OSA (Optical Society of America), IEEE (Institute of Electrical and Electronics Engineers), INNS (International Neural Network Society), and ISBS (Indian Society for Buddhist Studies). Amita has more than 40 publications in international journals and conferences to her credit. Her present research areas include machine learning, artificial intelligence, neural networks, robotics, Buddhism (philosophy and psychology) and ethics in AI.
Details
Erscheinungsjahr: 2017
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781787128422
ISBN-10: 1787128423
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Gulli, Antonio
Pal, Sujit
Hersteller: Packt Publishing
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 191 x 18 mm
Von/Mit: Antonio Gulli (u. a.)
Erscheinungsdatum: 28.04.2017
Gewicht: 0,597 kg
Artikel-ID: 109028320
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte