Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Elements of Algebraic Topology
Buch von Harold R. Parks (u. a.)
Sprache: Englisch

136,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
1 Homology Groups of a Simplicial Complex

1.1 Introduction

1.2 Simplices

1.3 Simplicial Complexes and Simplicial Maps

1.4 Abstract Simplicial Complexes

1.5 Review of Abelian Groups

1.6 Homology Groups

1.7 Homology Groups of Surfaces

1.8 Zero-Dimensional Homology

1.9 The Homology of a Cone

1.10 Relative Homology

1.11 *Homology with Arbitrary Coefficients

1.12 *The Computability of Homology Groups

1.13 Homomorphisms Induced by Simplicial Maps

1.14 Chain Complexes and Acyclic Carriers

2 Topological Invariance of the Homology Groups

2.1 Introduction

2.2 Simplicial Approximations

2.3 Barycentric Subdivision

2.4 The Simplicial Approximation Theorem

2.5 The Algebra of Subdivision

2.6 Topological Invariance of the Homology Groups

2.7 Homomorphisms Induced by Homotopic Maps

2.8 Review of Quotient Spaces

2.9 *Application: Maps of Spheres

2.10 *The Lefschetz Fixed Point Theorem

3 Relative Homology and the Eilenberg–Steenrod Axioms

3.1 Introduction

3.2 The Exact Homology Sequence

3.3 The Zig-Zag Lemma

3.4 The Mayer–Vietoris Sequence

3.5 The Eilenberg–Steenrod Axioms

3.6 The Axioms for Simplicial Theory

3.7 *Categories and Functors

4 Singular Homology Theory

4.1 Introduction

4.2 The Singular Homology Groups

4.3 The Axioms for Singular Theory

4.4 Excisionin Singular Homology

4.5 *Acyclic Models

4.6 Mayer–Vietoris Sequences

4.7 The Isomorphism Between Simplicial and Singular Homology

4.8 *Application: Local Homology Groups and Manifolds

4.9 *Application: The Jordan Curve Theorem

4.10 The Fundamental Group

4.11 More on Quotient Spaces

4.12 CW Complexes

4.13 The Homology of CW Complexes

4.14 *Application: Projective Spaces and Lens Spaces

5 Cohomology

5.1 Introduction

5.2 The Hom Functor

5.3 Simplicial Cohomology Groups

5.4 Relative Cohomology

5.5 Cohomology Theory

5.6 The Cohomology of Free Chain Complexes

5.7 *Chain Equivalences in Free Chain Complexes

5.8 The Cohomology of CW Complexes

5.9 Cup Products

5.10 Cohomology Rings of Surfaces

6 Homology with Coefficients

6.1 Introduction

6.2 Tensor Products

6.3 Homology with Arbitrary Coefficients

7 Homological Algebra

7.1 Introduction

7.2 The Ext Functor

7.3 The Universal Coefficient Theorem

7.4 Torsion Products

7.5 The Universal Coefficient Theorem for Homology

7.6 *Other Universal Coefficient Theorems

7.7 Tensor Products of Chain Complexes

7.8 The Künneth Theorem

7.9 TheEilenberg–Zilber Theorem

7.10 *The Künneth Theorem for Cohomolgy

7.11 *Application: The Cohomology Ring of a Product Space

8 Duality in Manifolds

8.1 Introduction

8.2 The Join of Two Complexes

8.3 Homology Manifolds

8.4 The Dual Block Complex

8.5 Poincaré Duality

8.6 Cap Products

8.7 A Second Proof of Poincaré Duality

8.8 *Application: Cohomology Rings of Manifolds

8.9 *Application: Homotopy Classification of Lens Spaces

8.10 Lefschetz Duality

8.11 Alexander Duality

8.12 Natural Versions of Duality

8.13 Cech Cohomology

8.14 Alexander–Pontryagin Duality

1 Homology Groups of a Simplicial Complex

1.1 Introduction

1.2 Simplices

1.3 Simplicial Complexes and Simplicial Maps

1.4 Abstract Simplicial Complexes

1.5 Review of Abelian Groups

1.6 Homology Groups

1.7 Homology Groups of Surfaces

1.8 Zero-Dimensional Homology

1.9 The Homology of a Cone

1.10 Relative Homology

1.11 *Homology with Arbitrary Coefficients

1.12 *The Computability of Homology Groups

1.13 Homomorphisms Induced by Simplicial Maps

1.14 Chain Complexes and Acyclic Carriers

2 Topological Invariance of the Homology Groups

2.1 Introduction

2.2 Simplicial Approximations

2.3 Barycentric Subdivision

2.4 The Simplicial Approximation Theorem

2.5 The Algebra of Subdivision

2.6 Topological Invariance of the Homology Groups

2.7 Homomorphisms Induced by Homotopic Maps

2.8 Review of Quotient Spaces

2.9 *Application: Maps of Spheres

2.10 *The Lefschetz Fixed Point Theorem

3 Relative Homology and the Eilenberg–Steenrod Axioms

3.1 Introduction

3.2 The Exact Homology Sequence

3.3 The Zig-Zag Lemma

3.4 The Mayer–Vietoris Sequence

3.5 The Eilenberg–Steenrod Axioms

3.6 The Axioms for Simplicial Theory

3.7 *Categories and Functors

4 Singular Homology Theory

4.1 Introduction

4.2 The Singular Homology Groups

4.3 The Axioms for Singular Theory

4.4 Excisionin Singular Homology

4.5 *Acyclic Models

4.6 Mayer–Vietoris Sequences

4.7 The Isomorphism Between Simplicial and Singular Homology

4.8 *Application: Local Homology Groups and Manifolds

4.9 *Application: The Jordan Curve Theorem

4.10 The Fundamental Group

4.11 More on Quotient Spaces

4.12 CW Complexes

4.13 The Homology of CW Complexes

4.14 *Application: Projective Spaces and Lens Spaces

5 Cohomology

5.1 Introduction

5.2 The Hom Functor

5.3 Simplicial Cohomology Groups

5.4 Relative Cohomology

5.5 Cohomology Theory

5.6 The Cohomology of Free Chain Complexes

5.7 *Chain Equivalences in Free Chain Complexes

5.8 The Cohomology of CW Complexes

5.9 Cup Products

5.10 Cohomology Rings of Surfaces

6 Homology with Coefficients

6.1 Introduction

6.2 Tensor Products

6.3 Homology with Arbitrary Coefficients

7 Homological Algebra

7.1 Introduction

7.2 The Ext Functor

7.3 The Universal Coefficient Theorem

7.4 Torsion Products

7.5 The Universal Coefficient Theorem for Homology

7.6 *Other Universal Coefficient Theorems

7.7 Tensor Products of Chain Complexes

7.8 The Künneth Theorem

7.9 TheEilenberg–Zilber Theorem

7.10 *The Künneth Theorem for Cohomolgy

7.11 *Application: The Cohomology Ring of a Product Space

8 Duality in Manifolds

8.1 Introduction

8.2 The Join of Two Complexes

8.3 Homology Manifolds

8.4 The Dual Block Complex

8.5 Poincaré Duality

8.6 Cap Products

8.7 A Second Proof of Poincaré Duality

8.8 *Application: Cohomology Rings of Manifolds

8.9 *Application: Homotopy Classification of Lens Spaces

8.10 Lefschetz Duality

8.11 Alexander Duality

8.12 Natural Versions of Duality

8.13 Cech Cohomology

8.14 Alexander–Pontryagin Duality

Details
Erscheinungsjahr: 2025
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9781032765549
ISBN-10: 1032765542
Sprache: Englisch
Einband: Gebunden
Autor: Parks, Harold R.
Munkres, James R.
Krantz, Steven G.
Auflage: 2. Auflage
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 164 x 242 x 39 mm
Von/Mit: Harold R. Parks (u. a.)
Erscheinungsdatum: 27.05.2025
Gewicht: 1,042 kg
Artikel-ID: 130665392
Details
Erscheinungsjahr: 2025
Fachbereich: Geometrie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Einband - fest (Hardcover)
ISBN-13: 9781032765549
ISBN-10: 1032765542
Sprache: Englisch
Einband: Gebunden
Autor: Parks, Harold R.
Munkres, James R.
Krantz, Steven G.
Auflage: 2. Auflage
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 164 x 242 x 39 mm
Von/Mit: Harold R. Parks (u. a.)
Erscheinungsdatum: 27.05.2025
Gewicht: 1,042 kg
Artikel-ID: 130665392
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte

Buch
-14 %
Taschenbuch
-16 %